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1. Introduction

The foundations of classical and quantum mechanics are deeply rooted in the symmetries
of spacetime. In both relativistic and Galilean frameworks, local boost invariance plays
a central role in determining the structure of phase space and the dynamics of particles
and fields. Boost invariance is embedded in the geometric structure of standard space-
time models—namely, Lorentzian manifolds for relativistic theories and Newton—Cartan
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spacetimes for non-relativistic mechanics [1]. In these settings, boosts link different iner-
tial frames, enforcing a relativity principle that severely constrains both the admissible
equations of motion and the symmetries of the underlying geometry [2].

However, a wide and growing class of physical, biological, and computational sys-
tems exist where boost symmetry is either broken, irrelevant or fundamentally absent.
In active matter systems and biological collectives, such as bird flocks or cell tissues
(see e.g. [3]), the dynamics often refer to an absolute frame dictated by a medium or
background, invalidating the equivalence of inertial observers [4]. In condensed matter
physics, non-relativistic effective field theories describing systems with anisotropic or
Lifshitz-type scaling (see e.g. [5, 6]) frequently violate boost invariance while retain-
ing well-defined Hamiltonian dynamics [7]. Similar structures emerge in the study of
particle-based optimisation algorithms, such as particle swarm optimisation (see e.g.
[8]), where particles evolve under Hamiltonian-like rules in a configuration space for
which imposition of inertial frames or boost transformations are overly restrictive [9].

These examples and issues suggest that the insistence on local boost invariance may
be unnecessarily restrictive in many contexts. Moreover, with the advent and utilisation
of gauge/gravity dualities, there have been many investigations into the nature and
structure of (quasi-)hydrodynamics for strongly coupled field theories (for example, see
[10] for a review) including arguments that boost agnostic hydrodynamics being in the
frameworkthat enables the understanding of steady driven states [11-16]. Many results
have been derived in these rather esoteric theories, however the general utility of the
formalisms and results remains dubious. Naturally, we would then like to work at weak
coupling with computational kinetic theories where the underlying theory is not only
understood and calculable, but intuitive. However, without a generic framework for
understanding systems with a lack of boost invariance, this has not previously been
possible.

Motivated by this, we develop the foundations of a boost-agnostic Hamiltonian mech-
anics in this work, a framework for describing particle dynamics on manifolds where no
local boost symmetry is present. The appropriate geometric setting for this construc-
tion is the Aristotelian manifold (see e.g. [17-21]), which features a globally defined
clock form (defining absolute time) and a degenerate spatial metric (defining absolute
spatial intervals), but no group action implementing boost transformations. This geo-
metry provides a natural structure in which to formulate theories where velocity is an
observer-independent attribute, and no relativity principle holds.

Core to what we develop here is the consistent coupling of our exotic particles
(i.e. those with boost-agnostic Hamiltonians) to curved manifolds; this allows us to
rigorously define an analogue of the stress-energy-momentum (SEM) tensor and charge
currents. However, doing so is quite involved. Hence, after reviewing minimal necessary
details on the geometry of Aristotelian manifolds, we begin by applying our formalism
to a class of easy-to-grasp systems on a flat manifold. We extend it to kinetic theory,
detailing the evolution of particle distribution functions on Aristotelian spacetimes.
We demonstrate that the SEM tensor complex and charge current derived from such
ensembles reproduce the ideal hydrodynamic form at a leading order in a derivative
expansion. Surprisingly, despite the absence of boost symmetry, the system still obeys
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the ideal gas law, a feature we trace back to the structure of invariant phase space
volume and energy conservation associated with time-like Killing fields.

Having then demonstrated the utility of our expressions, we will subsequently
develop the formal structure of our theory. In particular, we show how to construct
Hamiltonian mechanics on general Aristotelian manifolds in a way that preserves core
features such as the symplectic structure, conservation laws, and Liouville’s theorem.
We establish a formulation of phase space dynamics in which the Hamiltonian vector
fields lie entirely in the horizontal subbundle of the cotangent bundle. This leads to a
nontrivial generalisation of Liouville’s theorem, valid on constraint surfaces associated
with worldline-reparametrisation-invariant dynamics, such as those of exotic (i.e. having
a non-boost invariant Hamiltonian) free particles.

A key technical element of our construction is the application of the uplifts of Killing
vectors from the base Aristotelian manifold to the phase space. Despite the absence
of a boost group, many Aristotelian spacetimes admit rich isometry groups, whose
infinitesimal generators can be lifted to symplectomorphisms on phase space. We show
that these uplifted vector fields generate conserved quantities via a Poisson bracket
structure, and that the Hamiltonians associated with them are naturally preserved
under free dynamics. This allows us to construct a class of free Hamiltonians—defined
entirely from Aristotelian invariant scalars—that generalise the standard kinetic energy
terms in Galilean or relativistic theories.

In summary, this work lays the geometric and dynamical foundations of boost-
agnostic Hamiltonian mechanics. The formalism we develop:

generalises phase space dynamics to settings without local boost symmetry;
identifies the class of free Hamiltonians and their associated conservation laws;
establishes Liouville’s theorem on constraint surfaces for exotic particles;

Ll O

derives hydrodynamic observables and demonstrates the universality of the ideal gas
law.

These results open the door to a systematic treatment of systems—physical, bio-
logical, or computational-—whose dynamics are best described in the absence of boost
invariance, while retaining a fully Hamiltonian formulation.

2. Conservation laws according to Aristotle

We are indebted to many previous works on Aristotelian manifolds (a non-exhaustive
list includes [17-21]) for developing various parts of the formalism gathered here. In
this section we shall recount what is necessary for our discussion of Hamiltonian mech-
anics giving a brief overview, from the author’s biased perspective, rather than being
pedagogical. Those sufficiently familiar with the topics presented can skip to the next
section.
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2.1. A brief summary of the theory of Aristotelian manifolds

In Aristotelian geometry there are two key invariants related to the motion of a point
particle. These are the time between points At on its world-line and the spatial distance
Al. All observers must agree on the value of these scalars independently of their relative
motion and thus on the average velocity Al/At.

Let us consider the At and Al associated with the motion of a chosen particle
between two distinct points on its worldline. We take an Aristotelian manifold to be
a differentiable manifold M with a preferred choice of one-form 7 and a symmetric,
positive degenerate two-tensor h (the signature of & is (0,1,...,1)) which parameterise
the difference in time and space between points that are infinitesimally separated on
the world-line of the particle. Thus,

At:/%dAn@“M), Ah:/%dkv%wﬁdﬂiVQ), (1)

)\0 /\0

where z#(\) € M is the particle’s position on the manifold, & = da*(\)/dX and X €
[Ao, A1] is a parameterisation of a segment of the particle’s world-line. Notice that both
these quantities, At and Al are invariant under reparameterisations of the world-line
parameter A — A’(\) and that Al > 0 as expected for a spatial length scale. The motion
of a particle will be time-like if

dz# ()
dA

For future reference, we define a vector &* to be future pointing if

£0. (2)

Th

7-#5# >0, (3)

and conversely for past-pointing. The vector is spatial if 7,£# = 0.
Given 7, and h,, we assume that we can construct the vector v* and contravariant,

symmetric two-tensor R which satisfy

vir, =—1, huv" =0, ;LW’TV =0, (4a)
and, in particular, the coordinate basis completeness relation

W hy, = 64+ VP'T,, (4b)

Here 7, and h,, are termed the ‘structure invariants’, v* and h# are the ‘inverse
structure invariants’. A precise construction for them in terms of the vielbeins and the
local symmetry group is given in appendix A. Subsequently we can define the volume
form

volyy = edaz’ Ada A ... Ada?, (5a)
e =det (TM,eZ) : (5b)

where we assume that one can determine vielbeins e/, such that h,,, = d;;e},e]. For further
information please refer to appendix A.
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We now add a connection to our manifold. In particular, we shall also assume that
we can find a structure invariant compatible connection, such that

Vur, =01, —1%,7,=0, (6a)
Viuhyy=0uhyy =15 hoy =17 hep=0. (6b)

o
o Hv

This places the following constraints on particular projections of the connection
coefficients

0,7 = 04Ty, (Ta)

20, lwyo = Ophuy - (7b)

The second equation (6b) is not so distinct from what one has for the usual Christoffel

connection in a relativistic theory. Consequently we can use the same trick of permuting
indices to find

8uhy/\ + ayh,u)\ - aphu)\ = 2:[1((7/1,”) ha)\ + EZ)\hua + Zg,\hua ) (80’)
27, =207, (8b)

where 37, is a tensor, rather than a connection, called the torsion. A key difference
from the standard relativistic case is that we do not know a posteriori that we can set
this torsion to zero.

Consequently, taking the connection and projecting the raised index we have

- - 1 -
I, =T, (—Wﬂ + hmhap) = VPO, + Ty haoh™ + 550 hag B

1~
= —1/”5’,,,71, + Ehp)\ (8/1,]11//\ + ayhp,)\ - aphu)\)

1-

+ éhpA (27,00 — 0o — S0 hyo) - (9)
It should be noted that this connection has an important non-uniqueness. If we can find
a tensor K/, such that

Kh,r,=0, Kg,,mp + Kgpm,, =0, (10)

then we can shift I'), — fZV =17, + K%, while still satisfying (7). In the geometrisation
of Newtonian gravity this non-uniqueness can be used to introduce the Newtonian
gravitational potential. In particular, one posits the existence of an additional field to
7 and h, the mass form m, and identifies
7oA

Kﬁ,/:hp T(MFU)p, Fw,:28[ﬂm,,} y (11)
where under appropriate assumptions m, ~ ¢ 7, with ¢ is the Newtonian gravitational
potential [2, 22-24]. In future developments we hope to be able to use this freedom to
impose external forces on our system in a usefully geometric manner.
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As is done in [21] one may partly eliminate the torsion tensor from the expression
by using the Lie derivative of h along the vector field v. This latter quantity can be
written as

(Loh),, = v Orhyuy + 0,0 by + 0,7 By,
=1 (35,00 + 55, hop) (12)

where we have employed compatibility of the covariant derivative with the inverse struc-
ture invariants

V=0, +1 v =0. (13)

pp

The connection can then be expressed as

1- 1~
Flpw = VPO, + §hpk (Oplwr + Oylyx — Ophyn) + §hp/\7v (ﬁvh)ux

+ K7, (14a)
1 1
K, = —EhpAhaﬁhgy (S0 ho — S0ahae) — 5hfﬂzgh,ﬂ, , (14b)

where K7, is a tensor satisfying (10) but built without the introduction of a mass one-
form. We can then either view the torsion as some tensor we must supply in addition
to the structure invariants, or define K%, as is done in [21].

For our structure invariant connection, we can see that the torsion is generically
non-zero and forcing it to be will at least impose a constraint on the clock form. This
means that certain familiar results from (pseudo-)Riemannian geometry become more
complicated. For example, the commutator of derivatives acting on any tensor fields
includes an additional term

Ul Om Oj 1. 0'7 IATj11-..0m
[V/mv T o ZRMW\T

_ Ul -Om
§ :Rul/p, Pim1APi+1 P

/\ 0'1 Om
— Z LV T o (15a)
where we have defined the curvature tensor in the usual manner
R.,, =2 (a[urp] +T7, T, ) (15b)

Extreme caution must be exercised by those familiar with relativistic physics in
manipulating R, , as common features of the Riemann tensor, such as certain per-
mutation symmetries of the lowered indices detailed in lemma 4 of appendix A, failing
to hold for the Aristotelian curvature tensor.
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2.2. Killing vectors on Aristotelian manifolds

A feature of key importance in our work will be the relationship between symmetries
and the notion of a particle being ‘free’. In this section we shall discuss the generalisation
of infinitesimal symmetries to the Aristotelian case. In particular, one of the benefits of
building our system on top of curved manifolds is that it allows us to precisely define
the analogue of the SEM tensor—and thus energy and momentum as components of
this tensor—in an Aristotelian setup.

Suppose we are given some functional, such as an action for a particle, defined on
our Aristotelian manifold. We can introduce tensors T,, and T/w by the variation of the
action with respect to the (inverse) structure invariants® such that

- 1~ -
8.7 = / d™ g e {Tﬂéy/" - iTwéh‘”’} : (17)

where . = [d!z eL is the action (or other relevant functional), L the Lagrangian

density, and T;w is symmetric in its indices. An infinitesimal diffeomorphism acts on a
vector field and contravariant 2-tensor as

V= v+ (Lev)! ey (/jgﬁ) . : (18)

where £ is the vector field generating the diffeomorphism. Assuming . to be diffeo-
morphism invariant, as one expects for any reasonable theory, it is not hard to show
that if the variation of our action (17) is generated by the infinitesimal diffeomorphism
then

1 15(eL
5.5 = /dd+1 [5( Olel) poym 100 ).Ch‘“’]
e Ovk e Shiv

1 ~ -~ - 1~ -
- / A1z e {—ap (—eTow? + €Ty, ) + T, 050" — ST 0 €7 =0, (19)
e

up to boundary terms which we assume will vanish. If we further define the SEM tensor
complex as the (1, 1)-tensor object

T" = — V", + h*’T,, . (20)

then the following (conservation) equation,

1 " 1. .
0, (eT8) + 00" — ST 0,1 =0, (21)

4 We note that there is a small ambiguity in the definition of T}, under T}, — Tju 4 cTu7, as 7,07, = 0. Consequently, we
will choose a convention where the totally time-like component of this tensor vanishes as it does not enter into the conservation
equation (21). With that said, this decomposition of the SEM tensor complex in terms of the inverse structure invariants can be
compared to that of [21], where

Tax/ =-1° (h(wTv + hvaTa) + hachmehﬂu 5 T, = _TUTUTI/ + Trrnghﬂu . (16)

Again, where we have taken the convention that the totally time-like components of the 2-index tensors to vanish.
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is an identity that must be satisfied by any solution for the particle’s motion. This is
the analogue of SEM tensor conservation in a relativistic theory.

Among the diffeomorphism transformations (18) generated by different vector fields
¢ there is a special class, those which leave the inverse structure invariants unchanged,
which motivates the following definition:

Definition 1 (Aristotelian Killing vector). A Killing vector field £ on an Aristotelian
manifold M is defined to satisfy the following relations

,Cg’l' =0 y (22&)
Leh=0, (22b)

where 7 and h are the structure invariants.

The above definition generalises the usual notion of the Killing vector in Lorentzian
geometry (namely constancy of the metric under the Lie derivative) to Aristotelian
geometries and extends in the expected way to multiple Killing vectors. Once we have
developed charge conservation in section 2.3, we shall show how such Aristotelian Killing
vectors can be used to isolate the energy components of the SEM tensor complex on an
arbitrarily curved manifold.

As a consequence of the relationships between structure invariants and their
inverses (4), one can show that

Lv=0, Lh=0, (23)

whenever (22) hold. All these conditions, (22) and (23), can be covariantised and in
terms of the structure-invariant-compatible covariant derivative (14) one finds

Let =7, (V, &0 =304 da? =0, (24a)
Lev=—17 (V&' =% €0)0,=0, (24b)
(24¢)
(244)

op

Leh = [hyo (V" =38 ) + hyyy (Vo = 54,67) ] da” @ da” =0,
Leh=— [ﬁﬂp (V8" = 0,€%) + 1 (V 6+ — 25050)] 8,28,=0.
Moreover, combining the above with identities from appendix A we see that
1
VL& € = 0, (e€") =0 (2)
and consequently
1
ﬁgVOLM = —GM (65“) VOlM =0 y (26)
e
where voly, is the volume form given in (5a).
In a Lorentzian geometry with a covariant derivative compatible connection, the

Levi-Civita connection and subsequently all the curvature terms are invariants under
the action of the Lie derivative along a Killing vector field. More generally however, the

https://doi.org/10.1088,/1742-5468 /ae1572 9
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Lie derivative of the coordinate basis connection coefficients and of the curvature tensor
take the form

L, =V, (V8 =308+ R),E, (27a)
and
LR, =V Ll =V, LI, + zjwcgrgp , (27b)

respectively. One can find the derivation of (27) in [25]. In Lorentzian spacetimes
with torsionless, metric-compatible connections one can show that the right-hand side
of (27a) vanishes when ¢ is Killing. This does not generally apply to Aristotelian spaces®
nor indeed, Lorentzian connections with torsion [26]. Consequently, curvature quantit-
ies will not be invariants under flows generated by Aristotelian Killing vector fields. As
such, some authors require invariance of the connection as part of the definition of a
Killing vector, which ensures that geodesics map to geodesics under flow along this vec-
tor. However, this is not necessary for the SEM tensor complex to be preserved and we
shall not assume this. Consequently, this greatly restricts the quantities one can write
that are invariant scalars under integral curves of the Killing fields, a fact that will be
important when we define our free Hamiltonians.

2.3. Charge, energy and momentum in Aristotelian geometries

With Killing vectors now defined, we can develop the analogue of charge conservation
on an Aristotelian manifold. In particular, we shall show that if a vector field satisfies
a particular conservation law within a closed submanifold S C M, then an integral over
the boundary of S vanishes. In cases where the volume form can be decomposed suitably,
this corresponds to standard charge conservation and then we shall identify notions of
charge, energy and momentum density for systems moving on M.

Let J be a vector field in M. We first note that our volume form on M, vol,;, defined
in (5a) satisfies the following relation

EJVOIM == (VHJM — Zﬁujy) VOl]y[ . (28)

To see this, we work in local coordinates so that when we compute that the Lie derivative
of vol,; is alongside J we find

Lvoly = (8,“]“’ + det (e/{) ! J" 0, det (eﬁ)) volys , (29a)
ei = (TH,eZ) . (29b)

We can then find that
det (e}) ! d.det (e)) = efOue), = —1" 9,1, + €] D€, =T7,, . (30)

5 An exception are particular contractions of (27) with 7 and v which vanish on account of (A.43a) and (A.43c).

https://doi.org/10.1088/1742-5468 /ae1572 10
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Thus we conclude that
Lvoly = (6’,,,J“ + Pﬁu,]y) voly = (V},,Ju — EZVJV) volyys , (31)

which is the result displayed in (28). Subsequently, applying Cartan’s magic formula
which states that for any form w and vector X the following holds

,CX(,U = d(ixw) - ide s (32)
to (28) we find
d (i]VOl]u) = (VHJM — EZVJV) volyr , (33)

where 7 is the interior product and we have used that dvoly; = 0 as vol,, is a top-form
on the manifold M.

We can then employ the generalised Stokes’s theorem, which states that for a smooth
closed set S C M the integral of a form w over the boundary 05 of the closed set is
related to the integral over S of its exterior derivative by

where tg: 0S — S is the inclusion map and * indicates the pullback. Thus (33), once
integrated over any closed surface S, tells us that

/ LE(iJVOl]\/[):/VolM (VMJH—EﬂVJV) . (35)
oS S

As the surface S is completely arbitrary we make the following identification (with the
usual caveats in doing so)

j2%

VMJM—E/L J"=0 <~ /aSLE (Z.JVOIJM) =0. (36)

This conservation law for the current can also be rewritten without the covariant deriv-
ative as

%8,1 (GJH) =0 N (37)

where we remind the reader that e is the volume-form scalar introduced in (5b).

Let us assume for a moment that we have a manifold where 7 =dt, so that the
manifold is foliated by surfaces of constant ¢. Consider the submanifold S between two
hypersurfaces t =ty and t =t; >ty and let us write the volume form as

volyy =dt Ao, . (38)

That we can do this locally follows from the fact that, under mild regularity conditions,
one can construct a Gelfand-Leray form [27], o, = Lyvolys, where V is any vector field
satisfying 7[V] = 1. Subsequently, we find

* ([ * ([ Jt = T t=t 9
vs (tyvoly) = vg (i (dt Ao7)) Z{ E(}iif(jﬂ t:0t1 : (39)

https://doi.org/10.1088/1742-5468 /ae1572 11
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where the minus sign accounts for whether J* points into the closed submanifold (¢ = t)
or out of it (¢ =t;). Thus if J satisfies the conservation equation (36) we have

/ Jlo, = / Jo, . (40)
t=t1 t=to

The interpretation of this equation is that the total charge is conserved in time. In
general, we then can identify the charge (or number) density associated with a given
current J* by

n=r,J". (41)

The existence of such a scalar quantity in terms of a (globally defined) conserved vector
field J# extends to arbitrary Aristotelian manifolds, not just ones with foliations by a
time coordinate, although its interpretation as the charge density is cleanest in such
simplified cases.

Turning now to the SEM tensor complex defined in (20), we note that upon con-
tracting 7" with an arbitrary vector field X we generate a vector field i.e. THX".
Subsequently, following our argument above, we can relate conservation of the SEM
tensor complex to conservation of the current 7% passing through a closed surface in
M. Replacing J* by T# X" in the above proof of current conservation we find

/ [,:gv (Z'T)(VOIM) = /VO]]W (VM (TﬁXV) — EﬁVTZXU)
a8 S
= / voly (V, X7 = %7 X*) Ty
S
+ / voly (VT — 0, Ty +%0,T) X7 (42)
S

The integrand of the final term,

v, T"—SE T + 28 T (43)

prvs o vot po

is no more than the covariantised left-hand side of (21) in the presence of a structure-
invariant-compatible covariant derivative. As (43) vanishes, we do not however find an
integral for total charge conservation. Instead we see that

/ LZ’ (iTXvolj\/]) - / VOlM (VZ,XU - EZpo) TZ =0 (44)
oS S

whenever the vector field X is arbitrary. However, if we further choose X to be an
Aristotelian Killing vector satisfying (24), we find

(V67 =S, 6) T = (V,€7 — 2h,£%) VT,

2%

+ (V€7 = 5k £%) W T(pey =0, (45)
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where we have used that Tm is symmetric in its indices. Consequently, the vector field
THEY, whose projections represent energy and spatial momentum, is conserved i.e.

/ Lg (iTgvolM) =0. (46)
a8

Naturally, if we can decompose the volume form appropriately such as in (38), we
would like to interpret the result in terms of energy conservation. For this interpret-
ation to make physical sense however, we must ensure that " is future pointing (3).
Subsequently, we introduce the energy relative to £* defined by

ec = —T1, 108" . (47)

When we consider kinetic theory and hydrodynamics we will identify &, up to normal-
isation, with the fluid velocity u”.

3. Application: collisions, kinetic theory and hydrodynamics

In section 4 we shall develop the full formalism of Hamiltonian mechanics on Aristotelian
manifolds. However, this development is formal and in many relevant applications we
shall not require the full generality developed in that section; moreover this can obscure
the important physical details. The purpose of that development is to justify our iden-
tifications of charge current and SEM tensor complex through coupling the system to
curved backgrounds. Here then we state but a few of the results and apply them to an
example we feel is physically appealing.

Let our Aristotelian manifold be M =R%! with spacetime coordinates denoted
by a# = (2°,2'=" %) such that 7 = (1,0) and h = §;;dz’ ® dz/. We subsequently intro-
duce (d+ 1) additional momentum coordinates, p, = (py,pi=1...4), so that (z*,p,) form
coordinates in a patch of the cotangent bundle T*M. Consider the following free
Hamiltonians on this manifold

H.:T*M -R, H,: (x,p)t—)A(—po—i—ﬁ(ﬁQ)) . (484)
where, on-shell (i.e. on a level-set of H,) we can solve for pg to find
~ c
pozH(pQ)—X. (48b)

One can think of pg as the usual ‘energy’ of the particle and p as the spatial momentum.
The constant c represents the choice of zero energy. The function H(p?) is in principle
completely arbitrary and thus generally boost invariance is broken except in the very
special case H (p?) = % i.e. the standard non-relativistic kinetic energy. We state here
that the Hamiltonian equations, governing the motion of a particle, can be written as

d " _ OH "
az ()‘) - apﬂ ()\) - {H7$ ()‘)} ’ (480)
d oOH

apﬂ ()‘) = _81'/" ()\) = _{H’pu ()‘)} ) (48d)
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where \ is a parameter describing the worldline of a given particle, the above applies
independently both of the coordinate system and choice of Hamiltonian while
OF 0G  0G OF

{FaG} = apu @Iu - 8pu ax/j’ 9 (486)

is the Poisson bracket. That these are the correct equations will be discussed in section 4.
Meanwhile, in the same section, we shall find that the charge current and SEM tensor
complex of this system (48b) take the form

1, = ( / ap f) o+ (wf / d'p (%) pjf) 5. (48/)

Th0, ® dx” = (/ddpﬁf>8t®dt+ (/ddppif)atébdxi

. H -
- (wk / d’p %p/ﬂ f ) 0; ®@dt
. OH )
+ (th/ddp wmwf) 0, ®da’ | (489)

where f = f(t,Z,p) is the single-particle distribution function (not necessarily in ther-
modynamic equilibrium). This function, f, measures the probability for a single particle
to have a particular momentum and position. The function f in the absence of collisions
satisfies

of OHOf
o5+ 3. Do =0, (48h)

for our Hamiltonians H, defined in (48a) on flat manifolds without collisions. Extending
the above equations to the case of collisions we shall do in this section. Together,
these expressions (48) are sufficient for the applications we discuss here and we
hope the reader will accept them for now as a minor generalisation of what they
already know.

3.1. Elastic scattering

In the next section we discuss kinetic theory which inevitably involves the consideration
of collisions. There are some peculiarities in the realisation of elastic scattering (even
in flat space) of our exotic particles that are worthy of discussion and we shall address
them first.

We concern ourselves the analogue of 2 — 2 elastic scattering between two hard
spheres of radius R. Generally p, is neither conserved under Hamiltonian flow nor flows
generated by Killing fields due to curvature terms®. However, we can always assume
that scattering happens over a region where such curvature terms are negligible or, as

6 The contraction p,* is the exception as it is conserved both under free Hamiltonian flow and any Killing flows.
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Figure 1. An illustration of an elastic scattering between two hard spheres, distin-
guishable particles whose initial momenta are at right angles to each other.

we are doing, we can work in flat space. This will be sufficient to discuss their distinct
behaviour. We will also further assume that our particles are distinguishable so that we
can append the labels (1) and (2) to their respective momenta.

Let p(z) be the spatial momentum of the k' particle before the collision and ﬁgk) the

momentum of the same particle after the collision. Let us further define J_El) and J_EQ)
such that

Py — Py = Jay Play — P2y = J2) - (49)

Conservation of spatial momentum in the scatterlng reglon (and indeed throughout the

spacetime if it is flat everywhere) 1mp11es that J( —J( 2) = J. In a given scattering
we are aware of the variables p(1), P(2), T(1) and Z(5) as shown in figure 1 and it is
our desire to determine ﬁ(’l) and ﬁ(’g). We shall further simplify our example taking the

incoming particles to have equal magnitude momentum ||ﬁ(1)|| = Hﬁ(Q)H =p and to be

approaching each other at right-angles p(;) - p(2) = 0. The vector J will point along the
shortest distance between the cores of the two particles and we introduce the parameters
A and R according to the relations

1
\/§ )

Thus to determine ﬁ(’l) and ﬁ(’Q) it is sufficient to solve for \.
To compute A we need an additional piece of information, the dispersion relation. It
is only necessary to consider the following dispersion relation

J=MR, R= pay-R=

~ Dy - R =
H — 2 || (2)

(50)

i (%) = (7%)" - op?, (51)
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to make our point. The quantum analogue of the above expression is relevant for tri-
layer graphene with an appropriate alignment between the layers [28]. Conservation of
the total energy (the total py) throughout the interaction gives the following constraint

A () + 1 () = £ (7)) + 7 (75)) - (52)

Substituting in our expressions and rearranging we find for this particular Hamiltonian
and initial parameters we must solve

0:((AQ—\/§A+1>2—1)p2—a<)\2—\/§>\), (53)

to determine the final momenta. As expected A =0 is a solution—the particles ignore
each other—but there are three other solutions. These are

1 3 2«
A=-V2, )\z—ﬁi\/;/gﬁ—l. (54)

Consequently, when the momentum of the incoming particles satisfies p? < %a there
are four channels through which an elastic collision may be realised. As we can always
imagine a collision of sufficiently low momentum occurring in our gas, one can never
ignore these additional channels. This should be compared to the usual Galilean case
where there are only two ways for the particles to scatter—ignore each other or deflect
along unique trajectories. Dealing with these additional channels, and understanding
their consequence for the behaviour of the gas, is an interesting challenge we seek to
address in future work. In what follows we need only assume that some choice is made
to resolve such collisions.

3.2. Kinetic theory

Kinetic theory is the effective description of large numbers of particles in the dilute limit.
In this section we first develop the collisionless kinetic theory of our exotic particles,
before discussing the BBGKY hierarchy [29] and the consequences of collisions. In the
next section we shall apply the formalism that we develop here to particles with a single
dispersion relation and find in the collisionless limit ideal hydrodynamics.

To begin we need to define a notion of temperature; to do so, we must suppose that
the Aristotelian spacetime has some time-like Killing vector * satisfying the Killing
conditions of (22). In general, the existence of such a time-like Killing vector allows us
to construct the following scalar and vector quantities that are conserved under flows
generated by the Killing field [21]:

1
= g,
In the case of field theory, when one continues to imaginary time—if the correlation

functions have a periodicity in the imaginary time direction—then one can identify T
with the inverse of that periodicity up to normalisation constants i.e. the temperature

ut =Tp". (55)
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(see [30] for a discussion). The above (55) hold independently of the curvature of the
spacetime, but in the case of a flat Aristotelian manifold we can identify

u' = (1,7) , g =~ (1,7) , (56)

where ¥ is the spatial velocity familiar to us from Galilean mechanics. In particular,
and distinctly from boost invariant theories, the velocity v is a parameter that defines
the ground state which cannot be boosted away. It is the intensive thermodynamic
parameter dual to the extensive total spatial momentum of the system.

We begin with a one-particle distribution function f(z#()),p,(\)) for a free particle
which moves on a level set of (48a). The distribution f describes the likelihood of finding
the single particle of interest in some region of our spacetime. It satisfies

d Op, Of Ozt Of  OH. df OH. Of
o H = e = — =
d)\ (.f[f ()\) 7p,u ()\)) 8)\ 8]7;1, + a)\ axu ax,u, 8])/1, + apu 83:,/4, O ) (57)

where we have employed the Hamiltonian equations in (48¢) and (48d); these clearly
give the same expression as (48h). The generalisation to a distribution fy describing
multiple free (non-interacting) particles is well known. However, in the case that there
are interactions between these particles, we expect the one-particle distribution function
to depend on the particle world-line parameter and thus the above equation generalises
to

d ; 0

e (o )00 O0:0) = (L fv} + 2 =0, (58)
where (i) labels the particles and H is the full Hamiltonian describing the N-particles
and their interactions. Using standard arguments to construct the BBGKY hierarchy
[31-35] around H, the equation of motion satisfied by the one-particle distribution
function is modified to

d 0
af (xu ()\) P ()\) ,)\) B {H*, f} - (a_i)collisions =" ’ (59)

where the final term accounts for the effect of collisions and f is once again the one-
particle distribution, only now it is modified by the presence of the interactions. This
is the generalisation of (48h) to include collisions.

Assuming molecular chaos (that the particle velocities are uncorrelated during a
collision) and that any interactions preserve time reversal, spatial parity and translation
invariance in flat space leads to a collision integral of the form

Culf, fi2",py]
= / 4By d" By "oy w (8.5 Py By ) £ (Pl 7) £ (™) = £ B F () |
(60)
where w is the collision kernel parameterising the interaction i.e.
[Ho f}=—Culf, fie"p,] | (61)
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independently of the particle worldline. If we want this to vanish without recourse to
fixing the precise form of the interaction we can apply the principle of detailed balance
which imposes that

or more usefully
In f (5),7) +10 f (Bl 7) =0 f (57) + In f (5o, 7) - (63)

Further, a way to satisfy this trivially for all possible momenta is to assume that the dis-
tribution function is constructed from invariants such as energy and spatial momentum.
In particular we can identify the standard one-particle equilibrium distribution function
to be

fo=re T L =ke T ”, (64)

where k is a normalisation constant, which clearly solves (63) upon using conservation
of total energy py and spatial momentum across the interaction. We shall then call (64),
when evaluated on any level set of the Hamiltonian, the standard local thermodynamic
equilibrium distribution for that Hamiltonian.

An important result in kinetic theory is that for reasonable collision terms, the
divergence of a class of currents—identified with entropy—is positive definite (as follows
from the H-theorem [29]). Given a system satisfying (48b) and described by a generic
one-particle distribution function f we define the associated entropy current by

J'o, = {/ddﬁfln(Af)] O + zhiﬂ’/ddﬁ%pjflnmf) d; (65)

where J#, defined on an arbitrary Aristotelian manifold, and A is a normalisation term
present to make the argument of the logarithm dimensionless’. The time component is
familiar from kinetic theory and is the usual expression for the entropy density. However,
to arrive at the identification of the spatial part of J! requires some results that will
only be derived in section 4. Regardless, this entropy current is positive for reasonable
collision kernels which has important consequences for hydrodynamics. In particular,
positivity of this quantity can be used to constrain transport coefficients beyond leading
order in a small derivative expansion.

3.3. Ideal hydrodynamics of particles with a single dispersion relation

Luckily, flat space is the appropriate limit to consider ideal hydrodynamics; this follows
from the fact that torsion is order one in derivatives and curvature is order two while

7 The appearance of the constant A is related to the fact that we can shift S* — S* = S + cJ# where S* is also a conserved
current.
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the ideal theory sits at zeroth order. For the single dispersion relation Hamiltonians
of (48a), the standard one-particle distribution function takes the form

fo = Kexp (—% (ﬁ(ﬁQ)—ﬁ.ﬁ)) , (66)

where k is some normalisation constant which we shall fix shortly. We would now like to
show that our formalism reproduces the ideal hydrodynamic charge current and SEM
tensor complex.

Let us briefly review what is expected for a boost-agnostic hydrodynamic theory:
we suppose that a hydrostatic generating functional [21] exists, defined on a weakly
curved Aristotelian manifold in the presence of an external gauge field. The most general
generating functional on such a manifold that one can write down at a leading (zero)
order in derivatives that respects the symmetries is

W = / Ay eP (T, p,ulhyu’) (67a)
1
- y uu:Tﬁuv M:T(AMBM+A) ) (67b)
B'UT/I,

where P is, at the moment, an arbitrary function of the effective hydrodynamic fields
that will eventually turn out to be the pressure, and A is a gauge parameter present
to ensure that p is gauge invariant. The variation of the structure invariants and the
measure e in terms of the variation of the inverse structures invariants are:

01, = —hu(ory)éﬁ‘”’ + 7,1, 00" (68a)

ORy = =Ry 0h hoy + (Tyhyy + T hy,) SUF (68D)
1 .

de=e (TM(SV“ — §hﬂy5h"”> . (68¢)

Hence the variation of the temperature and velocity under variations that preserve
the Killing nature of the vector field 5 take the form

0 =-T (TZ,(SV” - u”hJ(MTy)(Sﬁ””) , (69a)
o= —pu (Tyév” — u“hg(lﬁy)(ﬁ#‘”) +ul'dA, , (690)
I — (Ty(sy" . uﬂhg(am)(sﬁaﬁ) . (69¢)

The terms 7}, and T},,, which combine to make the SEM tensor complex of (20), are
then defined by

- 1. -
SW = / d™lz e {TM&/N — §T,W6h“” + J“(SAM] (70)

where, in keeping with the considerations that led to (20), we have used the inverse
structure invariants. This expression should be compared to that of [21] where the SEM
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tensor complex is defined with respect to the structure invariants. Subsequently, one
finds the following hydrodynamic constitutive relations

JI=—u", (71a)

oP 9P _ ,0P o
8T 8_M —2u w) TU’ thw,u s (71b)

oP
ughU(;LTy) + 2@uphpﬂuahm, ) (71c¢)

The SEM tensor complex, constructed from 7}, and 7}, in (20), takes the form
T! = —v" [(P—=TorP — pd, P — 2u*d,2P) 7, + 20,2 Pu ho,) |
+ 1" [Phy, — (TOrP + pd, P + 2u*0,2 P) hyou’T,
~|—23uzPhpau”hl,,\u>‘] . (71d)

Further, using the identifications (55), so that /7, =1 and
u' = —v' +h"h,u” (72)
we can simplify the SEM tensor complex to

Th = — (=P +TOrP + 0, P+ 2u°0,2 P) ur, — Ph*"hpeu’ 1, + Ph* by,
+ 20,2 Phyou’ (uh +vH) . (73)

The relationship between the coefficients of the components of the SEM tensor complex
are a consequence of the existence of a generating functional and one can proceed
order by order in derivatives, correcting (67) and generating the hydrostatic part of the
constitutive relations.

On a flat Aristotelian manifold we would want to make the following identifications

J'=n, T=—¢, T)=pvi=DP (74a)
J=m', Th=—(e+P)v'=-J", (740)
Ti = PIT + (P + pi?) o' , T — §i — g (T4c)

where n is defined in terms of the charge current J# by (41). Notice in particular that
the charge density n and the kinetic mass density p are two independent thermodynamic
functions, contrary to what happens for (Galilean boost invariant) non-relativistic fluids.
The energy density with respect to u* is defined in (47) and corresponds to

€w=—(T)+TNh'") =e€— pi*. (74d)
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In the case of flat space we have as many Killing vectors as spatial directions, i.e. £, o
which then allows us to define the spatial momentum '

P =7,1,¢ (74e)
Consequently, the following quantity,
e=e,+P 7, (74f)

which is identified with the internal energy is conserved. By comparing these expressions
with the constitutive relations following from the generating functional, we see that
n, € and p are given in terms of the pressure P and its derivatives according to the
thermodynamic relations:

oP
¢=—P+TOrP + pud,P+25°0x P, n=0,P, p= 28_*2‘ (749)
(

Having developed the hydrodynamic constitutive relations above, our current task is
to show that, for the standard one-particle distribution function (66) using the generic
expressions for the charge current (48f) and SEM tensor complex in (48¢), the kinetic
theory formalism that we have developed reproduces the expressions in (74). This makes
our kinetic theory analogous to the relativistic and Galilean cases, only absent of boost
invariance.

In particular, using (48f) and (48¢), and comparing with (74a) we can see that the
charge densities in terms of the given one-particle distribution function have the form

n= i % (%) (/OO dppd+m1e?) /dQ cos™ (6) (75a)

m=0 p=0
_ = 1 U™ OO d+m—1 17 _i m
e—mzom! (T) (/pzodpp He T)/dQ cos™ (0) , (75b)

_Uj 1 LAY * d+m —14 A m
P== LZ:OW@) (A_Odpp e T)/dﬂpjcos (9)] , (75¢)

where 6 is the angle between § and ¥, and we have introduced the notation p = ||p]| and
v = ||7]|. In deriving these expressions we have assumed that the summation converges
appropriately once we expand exp(p-¢/T) as a power series i.e.

fs= mz % (2% cos (9)>mexp (—@) : (76)

m=0 ’
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Corresponding to the expressions for the conserved charges are the respective spatial
currents (74b) and (74c¢) given by

i __ ol > 1 vA\™ > d+maﬁ _a m-+1

J'=20 mzom (T) (/p_odpp ?e T) /dQ cos" " (0) (77a)
i __ on o 1 v\™ > d+m 17 81{1 —% m+1

J! =20 mzom (T) (é_odpp H(?_er ) /dQ cos" (0) (770)

_ont 1 U\™ = d+m+laﬁ . m+1
=20 ﬂ%%(f> </p 0dpp 3p2€ T dQ pjcos™" (6)
- 1 v\ OO d—i—m—i—laf{
r2 X L () ([ et

where we have already employed certain results from appendix D to simplify some

of the expressions. We can further decompose the j index of T 9 and Tj parallel and
perpendicular to the velocity parameter ¢ to obtain

> m—1 o0 i
Z LT <£) (/ Odp pd+meT> /dQ cos™ 1 (6) (78a)
=
. . 0 1 m oo ]f[ _
T =200y — (%) ( / d pd+m+1g—p2e—¥> / dQ cos™ 2 () (78b)
m=0"" p=
.1 so\m OH _x .
+QZ — (T> (/p dppd+m+1a—e T) /dQ D; pj cos™ () sin? (6) ,
m=0 -

after again employing identities from appendix D.
To evaluate the relevant integrals in (75), (77) and (78) in a quasi-compact form,
let us define

H\m'

)/dﬂ p; pjcos™ (0)sin () , (77¢)

F(m+%> Cm+1 o 1
@m)IT (m+4)’ cn 2(m+1)(2m+d)

(79)

Cmym —

Computing the angular integral in the number density and its associated spatial charge
current using results in appendix D we find

B e} om [e%) _
n=2r"t Z Cm <%> (/ 0dp p“]’”m_le_?) : (80a)
m=0 p=
, -1 — v\ 2m ptm 5™ e o _q -
Ji= |21 Cm (_> |:_ e T:| +/ dpdeer le = o

=nv', (80b)
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where we have integrated parts the momentum integral and assumed
[pd“”e_ﬂ =0, (81)

which holds for any reasonable choice of H with m >0, d > 0. Consequently, when the
one-particle distribution function takes the standard local form (66), independently of
the functional form of H (p*), one necessarily finds that the particle number current has
the form of the ideal hydrodynamic constitutive relation i.e. J* = nut.

Turning to the SEM tensor complex, there are five distinct tensor structures in (74b)
and (74c), and only three thermodynamic scalars that appear: e, P and p. Of these
scalars, the energy density and mass density have the form:

d—1 > v 2m o i H
—9 - (_) d d+2mle —= , ]2
€ W?Zc,T </popp e T (82a)

m=0
271'% o0 v 2m oo pd+2m+1 7
- (2 dpl ¥ . 20
o= e (1) () ) 20

Given the expression for the number density (80a), we see that if H has the Galilean
form H = p? then

/ T apprniet = [ 200 ) T / dp p2mHeh (83)
e T = e —_ ,
o PP dtem |, @+2m)T /"

i.e p=n as expected in a Galilean theory when the boundary term vanishes.

The third as yet unknown thermodynamic parameter appearing in (74b) and (74c¢),
the pressure, can be determined from the transverse (to the spatial velocity ) part of
the spatial stress T’ i.e.

e}

P =t S v 2m d+2m— 1
T:27T 2 mzz:ocm <T> / dpp T=n, (84)

p=0

where we have integrated the momentum term by parts and assumed (81) holds. This
is nothing more than the ideal gas law in a suitable choice of units and we have thus
established one of our claimed results: independently of the form of H(p?), a gas of free
particles fulfils the ideal gas law. This independence of the ideal gas law from dispersion
should be compared to the effect of turning on interaction potential, which generically
leads to departures from PV = NT.

To complete our objective of demonstrating that the currents take the form of ideal
hydrodynamics, it remains only to check that the thermodynamic relations (74¢g) are
satisfied and that the totally parallel parts of T ; and the energy current J! have the
desired form given in (74b) and (74c). Let us achieve the second aim first; the energy
current evaluates to
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[27Td21 Zcm <—) / dp ptH2m-1 (f[+T> e_g}‘] v
0

p_
= (e+P)0v", (85)
where we have used
it

/ dp pd+mgﬁe—¥ =—(d+m) / dp pttm-1 (FI + T) e T (86)
p=0 8]9 p=0

assuming again suitable behaviour at p =0 and p — oo. Meanwhile the totally parallel
part of the stress tensor is given by the integral

/UT?/U] _ oo -
i RV [COT/ dpp~le T
p=0

> 2m  [°
+TZ (2m+1)cy, (%) / dp p2mle ]
p=0

m=1

=P+ pU2 , (87)

where we have used

2 2m o0
v’ = 2T Z 2me, (%) (/ dp p?™mle ) . (88)
m=1 p=0

Thus these terms are as expected from ideal boost-agnostic hydrodynamics which com-
pletes our check for the form of the currents.

Finally, we check that the relevant thermodynamic relations (74¢) hold. To do this
we contract (65) with the clock form to find

e—pv? —nT (Ink —In A)

; 7 (39)

s=T1,Jl =
where we have employed the definition of the charges (75). Rearranging we see that
e+P—pv* —sT=nT(Ink—InA+1) (90)

and used the ideal gas law (84). This expression is almost the integrated form of the
first law, so we need only identify

r_ (E)
T In 1 +1, (91)
from which it then follows that

¢=—P+sT+pn+pv*. (92)
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Without loss of generality, we choose k = eT, with x then chemical potential, and In A =
1 so that

fo=exw (3 (A7) - u-77)) (930)

8.  (93b)

o om
s [ snsv] o | [0l S g a g+

Consequently, having identified the chemical potential we construct the grand canon-
ical potential, Q = —P(u,T,v?)V, and find the following thermodynamic identities are
satisfied

aQ) d—1 I i v 2m oo dtom—1 73
R = —2/,(/71' 2 VeT Cm, (_> / dpp +2m e T — _nv ’ (940/)
(3u TV 7;) T p=0
89 ) d—1 W o m v 2(m71) [e%¢) i
o =2m = IVel ) —5cm <_) / dp ptH2m—le T
(81}2 T mz_l T2 T -
- —gv ’ (94b)

o' T TVefr
- — p e
aT T4,V "

S o\ [ |[H—p = @2m 1T | g
xn;)cm <T) /pzodpp T e T
P— _ 2
:—(6+ -~ p“)vz—sv, (94¢)

which are indeed the relations given in (74¢) and justifies our identification of the
chemical potential. This completes our demonstration that our formalism reproduces
ideal hydrodynamics independently of the form of H(5?), and demonstrates the utility
of our formalism to derive useful results i.e. the ubiquity of the ideal gas law and
hydrodynamics. 3

As we can see from (80a) and (82a), for a generic dispersion relation H, the ther-
modynamic variables are functions of the gas velocity ¢, and moreover p # n, which
holds only for systems with Galilean symmetry. We can see in practice how the expres-
sions we obtained for €, p and n behave for a specific example, namely that of a gas
of Lifshitz particles. Consider a gas of free particles with a Lifshitz dispersion relation

H= @, where z is the dynamical exponent and o a constant that fixes the units;
see appendix C for further details. The non-relativistic case is obtained when z =2 and
a = 2m, with m the particles mass. Some thermodynamic quantities, for this specific
class of Hamiltonians, are plotted in figure 2 as functions of the fluid velocity. In partic-
ular, from the plots, we immediately see that €,, p and n are independent of the velocity
for a Galilean gas, furthermore n = p both in d =3 and d =2 dimensions. Clearly, the
same is not true for a Lifshitz gas (z =3 in the example): all functions decrease with
the fluid velocity, and, moreover, p # n even at zero velocity. This is something still
under-looked and often missed in the literature [7, 36-38].
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Figure 2. Energy density €,, charge density n and kinetic mass density p as func-
tions of the velocity v in 2 and 3 dimensions for a Lifshitz and Galilean gas. The
parameters used are T'=0.5 and oo = 2m = 2.

4. Developing Hamiltonian mechanics

In the previous section we applied our formalism, now we shall derive in generality
the results used. We shall pay special attention to coupling Hamiltonian mechanics to
a curved Aristotelian manifold, making allowances for the fact that there is no inner
product® in our formulation. We shall discuss how Killing vectors can be lifted from the
Aristotelian manifold to a subclass of diffeomorphisms on the phase space. Subsequently,
we shall introduce the ‘free’ Hamiltonians and establish Liouville’s theorem on the
constraint surfaces of exotic free particle motion.

4.1. Phase space geometry

The phase space of a system is the manifold generated by all possible configurations
of generalised coordinates and momenta for that system. Trajectories in phase space
then represent how the system evolves from one configuration to another. We take the
Hamiltonian description (as opposed to using the Lagrangian and deriving Hamiltonian
mechanics) as our fundamental starting point. Nevertheless, in a nod to Lagrangian
mechanics, we take our generalised momenta to be covectors and thus to transform cov-
ariantly under coordinate transformations. Subsequently, given a Hamiltonian function
that describes the behaviour of the system, trajectories through phase space are gener-
ated by the corresponding Hamiltonian vector field whose integral curves are solutions
to Hamilton’s equations.

We begin with an orientable Aristotelian manifold M which describes all the space-
time positions of the system. The cotangent bundle of any orientable manifold M is

8 The spatial metric %, is not an inner product as it is not positive definite. Indeed, v*h,, v = 0 and v* is not the zero vector.
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defined as the collection of points
T"M ={(z,p):x € M,peT; M} (95)

where T M is the cotangent space to the manifold M at z. If the manifold M is ori-
entable, then so is the cotangent bundle [39]. The points in the cotangent space to a
given point z in the manifold M, i.e. T M, are covectors representing all the poten-
tial generalised momenta of the system. We shall see shortly that picking a preferred
Hamiltonian will then select just one element of the cotangent space at each point on
the manifold.

We will often make use of local adapted coordinates z* and p, to describe the
neighbourhood of a given point in T*M. A generic vector field X (x,p) in the cotangent
bundle T*M can be written in terms of locally adapted coordinates as

(96)

The basis { 85#‘ } is the standard coordinate basis at a point € M while { o } is a

basis of the cotangent space Ty M at x € M. Together these form a basis of T(T*M ) at
the point (z,p) € T*M. However this will not be the most convenient decomposition for
our Hamiltonian theory on curved space. Consequently, we introduce a slightly modified
(non-coordinate) basis

0 0
X (z,p) = X" (x,p) @‘ +Y,(z,p) I

Kl

0 0
I’ p,— d —_— 97
8113“ + LLl/pPapV ’ an apu ) ( )

D,=
so that a generic vector field on the cotangent bundle is given by

0
X =X"D,+ Zﬂa X*0u+ (Z, + X"'T%,p,)
7

0

98
Ipy (98)
The spaces spanned by D, and % are called horizontal and vertical vector spaces

respectively and they have a metric independent definition that we discuss in
appendix B. These basis elements satisfy the following relations:

o 0 0 0
- Dy, —| =17
[319“ 8pu] 0, { “’319”} " Op, (99a)

, P 9
[ I/] - (26[MF/ + 217 ] )ppa Rﬁuappa_pg 5

o (990)
where non-commutivity of the basis elements indicates that this is generally a non-
coordinate basis with non-trivial anholonomy coefficients (A.10).

In the relativistic case, the decomposition of vectors into horizontal and vertical
spaces is very useful as it can be used to uniquely uplift the spacetime metric to the
Sasaki metric. The Sasaki metric is the unique metric on 7% M respecting the decom-
position into horizontal and vertical spaces [39]. In our case, while there is no unique
analogue of the Sasaki metric, we shall nevertheless find that our free Hamiltonian
vector fields lie entirely in the horizontal space.
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As we have a basis for the tangent spaces to the cotangent bundle, T'(T*M), we can
also construct a basis for the corresponding cotangent space. Each element of the dual
basis will be defined such that it is one on a single given element of the original basis,
and zero for all other elements. In particular, take the following one-form basis

Dp, =dp, —T4 psdz®  and  da’. (100)

These span the space of one-forms at a point on the cotangent bundle and satisfy the
following relations:

dz" (D,) = ot , dz" (Dp,) =0, (101a)
9 v
Dpy(D,) =0, Do, (50-) =01 (1018)

So far we have discussed coordinates on and (co)tangent spaces to the cotangent
bundle T*M. Now we introduce the Hamiltonian which is some preferred function H
defined on the cotangent bundle; this Hamiltonian defines the dynamics of particles. In
terms of our basis one forms (101), the exterior derivative of any such Hamiltonian can
be written in local coordinates as
OH OH oOH (8}[ OH _, )da:“.

dH = —d dzt = D — r
Op,, plfi_f)ac“ . Opy Put 8xﬂ+3py P

(102)

For our free Hamiltonians the second term will vanish identically as it is propor-
tional to terms like V, v and V,h”? which are zero for structure invariant compatible
connections.

Our cotangent bundle is not yet equipped with any additional geometry. In fact,
unlike the relativistic case, it is not clear that there is a (canonical) lift of the structure
invariants from the manifold M to the tangent bundle T*M which would make the
cotangent bundle Aristotelian. This should be compared to the canonical lift of a space-
time metric to the Sasaki metric [39]. Nevertheless, we can in a natural manner equip
this 2(d 4 1)-dimensional manifold with a closed, non-degenerate two-form 2 called the
canonical symplectic form which has some useful properties. In local coordinates 2 is
written as

Q= dp, Ada* . (103)

We then define the Hamiltonian vector field Xy, corresponding to a given Hamiltonian
H, by the following identity,

dH (2) = Q(Z, Xy) (104)

where Z is any vector in the tangent space to the cotangent bundle. In a coordinate
basis one finds

(105)

oH OH 0 0H _<8H oH _, > 0

Xy = 0, — = —+— N e
i op, " Oxrdp, Op, " 8m”+0pu P Op,
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so that integral curves of Xy in an adapted basis give us Hamilton’s equations displayed
in (48¢) and (48d), with A some parameterisation of the integral curve. The integral
curves of the vector field Xy are the solutions to Hamilton’s equations of motion. We
will also have need of the following identity involving the interior product

ix, Q= X}Tda" — X{idp, = —Q(-, Xn) . (106)
We can now reaffirm the generic validity of the standard version of Liouville’s theorem
on the cotangent bundle:

Theorem 1 (Liouville’s theorem on T*M). A canonical phase-space volume volr« s
exists, defined in terms of the symplectic form €0, and given by

d(d+1)

_ (_1)T
volps s = CE 1/+\1§2 (107)

which is conserved under the flow of any Hamiltonian vector field.

Proof. Using Cartan’s magic formula (32) on the symplectic form and applying (106)
we have

Lx,Q=d(ix,Q)+ix, (dQ) =d(—dH)=0.

Now acting on (107) with the Lie derivative along the Hamiltonian vector field and
employing the above identity gives the desired result. ]

In local coordinates on the cotangent bundle, the volume form looks like

1

volpsy = —mdpu1 Ao ANdpy, Adaft A LA date (108a)
= —dpoA... Adpg Ada® A ... Adz?, (108b)
= —volp«y Avoly , (108¢)

where the last equality follows from the fact that it is always possible, due to the local
product manifold nature of fibre bundles, to write the volume form as a product of the
base manifold volume form and a form restricted to the cotangent space at each point
of the base manifold. In particular, one can take

1
VOIT;A[ = gng AN...N\NDpyg, (109)

in the vicinity of a given point. Morally this latter form measures the volume on the
cotangent space at a point z of the manifold.

With this said, Liouville’s theorem 1 as stated above applies to the entire cotan-
gent bundle T*M and tells us that for generic motions the phase-space volume along
integral curves of the Hamiltonian vector field is conserved. However, for free exotic
particles—just as in the relativistic case—motion will be constrained to codimension
one submanifolds. In particular, our exotic particles will be described by equations with
world-line reparameterisation invariance. It is a known result that the Hamiltonians of
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such systems vanish [40]. Consequently, to describe particle motion, we have to introduce
new Hamiltonians given by an auxiliary field A multiplying constraints that determine
the relevant submanifold (see appendix C for the example of a Lifshitz particle). It is
far from given that Liouville’s theorem applies to any such (2d 4+ 1)-form, so we must
work to select a suitable one in the next sections.

4.2. Killing vectors on phase space

As we noted in our discussion on Aristotelian geometry in section 2.2, infinitesimal
symmetries on a manifold are encoded in Killing vectors (22). In this section we show
how diffeomorphisms of the base manifold M, in particular Killing vectors, can be lifted
up to the cotangent bundle T* M. We will also discuss how the structure of infinitesimal
symmetries manifests in Hamiltonian mechanics. We shall use these uplifted Killing
vectors in the (next) section 4.3 to define a free Hamiltonian.

Following [41] we define the uplift of any infinitesimal diffeomorphism & on the

manifold M to be a vector field on the cotangent bundle, denoted é , by
oc 0 )

= '8, — paga— =E"Dy —p, (Vo€ — 3 & . 110

g 5 1% p 8%“’ ap'u é- 1% p ( g Ocug ) apa ( )
These uplifts can be shown to be infinitesimal diffeomorphisms on the cotangent bundle
[39]. It is useful to know the action of such an uplift on the basis elements of the tangent

space to the cotangent bundle (i.e. (97)),

v o o 0 9
EfDlL = —3,@ Dy + (VMVVé + Rp/wgl)pff

op,
009" 0
$0p, Ox”Op,

(111a)

L

(111b)

The index order of the Riemann tensor in (111a) should be compared to the relativ-
istic case in [39] where, in that case, the first (algebraic) Bianchi identity was employed.

We remind ourselves that an Aristotelian Killing field (definition 1) is a subclass
of infinitesimal diffeomorphisms. In the next proposition we discuss properties of the
uplift of such a Killing field £ from the base manifold M to the cotangent bundle 7" M.
The resulting vector field can then be treated as the Hamiltonian vector field for some
new scalar potential F' defined on 7" M. However, to define this potential we first need
one additional definition—the symplectic potential, otherwise known as the tautological
one-form. As €2, the canonical symplectic form, is closed df2 =0 we should be able to
locally write it as the derivative of a one-form which motivates:

Definition 2 (The tautological one-form/symplectic potential). Let Q be the sym-
plectic form on M. The one form O, called the tautological one-form or symplectic
potential, is such that it satisfies d© = ). In local coordinates, this form can be
written

© =p,dz" . (112)

This now allows us to make the following observations:
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Proposition 2 (Properties of the uplift of a Killing vector field). There are a couple
of properties that the uplift of the Killing field has that are interesting for our purposes:

1. The uplifted Killing vectors satisfy the same algebra as the original Killing vectors
69] =g, (113)

where € and Y are two Killing vectors on the base manifold.
2. f generates a symplectic flow on T*M 1i.e.

L:Q=0. (114)

For this flow the Hamiltonian is F' = @(é) and f = X the corresponding Hamiltonian
vector field. Consequently, the canonical volume form volr«y is conserved along integ-
ral curves of &.

Proof. These proofs are given in [39]. O]

The definition of F' in the above proposition 2, naturally extends to multiple Killing
vectors &, and their uplifts &, where F, = O(&,). We caution the reader that we are
not claiming the uplifted Killing vector is a Killing vector on T*M, as we have not
defined any geometric structure on 7M. Instead it is only the projection £ that has
the Killing properties. Exploring the geometry of £ and introducing a suitable structure
to make them in a sense Killing vectors is an interesting question beyond the scope of
this work. With this said, the potential for multiple Killing vectors on M motivates the
introduction of one further piece of formalism:

Definition 3 (Poisson bracket). Let F and G be two functions on 7*M. The Poisson
bracket of F' and G, denoted {F,G} is defined by

{F,G} =Q(Xr, Xc) (115)

where X p and X are the Hamiltonian vector fields (104) associated with F' and G
respectively.

The Poisson bracket satisfies several well-known properties including bilinearity,
anticommutivity, the Jacobi identity and the Leibniz rule. In local coordinates this
new object can be decomposed as (48¢). Further, when acting on the Hamiltonians
associated with Killing vectors, one finds

{Faan} - [éaaéb} = [ﬁajgb] - Cab"éc ) (116)

with Cue being the structure constants of the relevant Lie algebra associated with {,}.
Subsequently, the scalar F', is conserved under Hamiltonian flow if

XH[Fa]:dFa[XH]:Q<éa7XH> :{HaFa}:Oa (117)

which implies the Hamiltonian analogue of Noether’s theorem [39] i.e. infinitesimal
symmetries correspond to conserved charges on every solution to Hamilton’s equations
of motion.
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4.3. ‘Free’ Hamiltonians

In Galilean and relativistic mechanics a central role is played by the ‘free’ Hamiltonians.
These Hamiltonians are invariant along integral curves of all the infinitesimal symmetry
generators of the base manifold. Here we generalise the usual free Hamiltonians of
Galilean and relativistic particles to boost agnostic systems. To do this, we first begin
by listing the invariant scalars and vectors:

Lemma 1 (Conservation of some free invariants). Given any Killing vector £ on an
Aristotelian manifold M, the following scalars

puibuypl/ ) V'upu ) (1180,)
and vectors

0 0
Ty

W Pum—> 118b
3pu Nap,u ( )

are invariant under integral curves of the uplift €.

Proof. This can be shown by explicit computation in locally adapted coordinates:

Eé (pu") =p L' =0,

Le (Pufvay> =P, (ﬁgﬁf’”) Py =0,

where we have used Killing conditions in Aristotelian spaces (22) to arrive at the final
result. Similarly,

] .9 0 aer 9
£ [%} - {5’7“8_1%1 =08 gy T g o,

9 .9 8 aer 9
‘Cg [pua_m} - [gap/La_m] - (_paa,ufa) apﬂ +pu O’ 6p,, - 07

where we have used (99) and the Killing conditions (22). O
We should note that the following vectors,

v'D,,  p,h"D, (119)

which we might be tempted to add to our set of free invariants are not generally invariant
under flows generated by &. In particular, it is generally the case that

8250[ )
M — H
B B (9250‘
. % — no
celpien]) = (imn 50 ) #0. 20

where we have used (23). It may be possible to construct vectors and scalars that are
invariant using the Riemann curvature tensor, yet we have found this difficult to achieve
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given that, unlike the relativistic case, invariance of the structure invariants does not
imply invariance of the connection under flows of the Killing field (see (27)). We leave
the discovery of a conclusive answer to future work.

The statements of the above lemma are true independent of the Hamiltonian (they
make no reference to such) or the exact form of the structure invariants. This motivates
the following definition:

Definition 4 (Free Hamiltonian). A free Hamiltonian on an Aristotelian manifold M
is any scalar function of the free scalar invariants in (118a).

For future reference, in local coordinates, our free Hamiltonians take the form

Hy = H; Vﬂp/millwpupu} ) (121&)
0H, 0H, ~
X; = —fV“+2~—fh/“/p,, D, , (1210)
9 (vpy) 0 <hpgpppa>
dH; = X'Dp, , 121c¢
f k

i.e. the Hamiltonian vector field associated with a free Hamiltonian is entirely horizontal.
The motivation for such free Hamiltonians is nicely physical, as in flat space we readily
identify p,h*p, with the spatial momentum squared while —v*p, is the usual notion of
particle energy. We remark to the reader that the property of being horizontal is quite
useful (as we shall see) and remind them that it is shared by the relativistic free particle
Hamiltonian.

Theorem 3 (The free invariants are preserved under free Hamiltonian flow). The
free invariants of (118) are preserved under Hamiltonian flow of any free Hamiltonian.

Proof. We notice that
Lx, (p") = X{p,V.,"=0,
Lx, <pui~z“”p,,> = Xfppuvpﬁ“”pl, =0, (122)
which shows the free scalar invariants are preserved under Hamiltonian flow. As for the

vector invariants, we first compute the action of a Hamiltonian vector field associated
with a generic free Hamiltonian on a generic vector field of the form

0
V=V'D,+V,—.
f lgpu

The result is:

Ipo
+ (Xf,0,V* = V"9,X}') D,

0 0
EXfV = Xfﬂ (vp,‘/p + Ffmpu_v:o + VVRZZ/pp(T> %
p

0 0 0
+1I.p, (Xﬁf—V”’ — V”—Xf“) D,-V, (—X“) D,.

Po apa 3]% t
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where we have employed (121b). Upon substituting in our free vector invariants (118b)
we see this is identically zero and thus the free vector invariants are constant along
Hamiltonian flows. O

As an example, consider the following Hamiltonians introduced in 3,
H,=\ (puv“ +H (ppiz””p(,)) . (123)

of which the Lifshitz Hamiltonians in appendix C are a subclass. This Hamiltonian has
a single dispersion relation as it is level-set, the zero value of which we can parameterise
by

put = —H (ppiz/’”pg> ) (124)

This is the origin of the expression (48a). Notice that this is not true for a general
free Hamiltonian as in principle there could be multiple disconnected solutions to H =0
when p, " occurs non-linearly. In fact, this is precisely what happens in the relativistic
case where the analogue of p, " appears quadratically. This manifests as the appearance
of a disconnected future and past light cones for massive particles; which intersect at
zero momentum for a massless particle.

If we specialise to flat spacetime and introduce Cartesian coordinates on the
Aristotelian manifold z°,. .. 2% such that 7 = (1,0) and h = d;; then the associated cotan-
gent bundle is also flat. We can introduce Cartesian coordinates on the cotangent space
at a given point in the base manifold such that

puV" = —po , P p, = 8iipip; = P, (125)

so that our Hamiltonians (123) become (48a). As the Hamiltonian is conserved under
its own integral curves’, we find that particle motion is constrained to surfaces where
H, = ¢, which can be denoted by H_'(c) C T*M. We can parameterise H_ '(c) as the
set of points (2°,...,2% po(p?),p1,...,pa) and discover (48b). The constant c is nothing
more than the usual choice of what we call zero energy. Additionally, for later use, we
find that the Hamiltonian vector fields of systems defined by (48a) in our coordinate
system take the form:

X=X -0+2—=p- 0|, ﬂj:A, afq* :Aai. (126)
9 (purt) B (pphﬂ”pcr) 9p

4.4. Embedding codimension one hypersurfaces of M in T*M

When defining conserved charges and conservation equations on the Aristotelian mani-
fold M in section 2.3, we isolated some subset of the particles using a bounding (closed)
surface S. The particles inside of this bounding surface are still generically able to

9 A short proof is given in [39].
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explore the full range of momenta; hence, we expect that an uplift of this bounding
surface to the cotangent bundle T*M spans the full range of momenta but a limited
subset of configuration space. In this section we discuss how to uplift these closed sur-
faces from M to T*M. Then, in the next section, we shall demonstrate how the charge
conservation of section 2.3 can also be uplifted.

To begin, suppose that we have a closed co-dimension one submanifold S C M with
boundary 9S. Further, let n =n,dz" be a normal form of the boundary 95 so that
n(X) =0 for any X tangent to 0S. We consider the corresponding 2(d + 1) and (2d + 1)-
dimensional sub-manifolds defined locally by

Y={(z,p):xeS,peT"M|,}, (127a)
0% = {(z,p):x€dS,pe T*M|.} , (1270)

and note that the projection of ¥ and 0% onto real space are S and 0S respectively.
These new manifolds (127) contain all the possible configurations of the system compat-
ible with their being bounded by S in spacetime. We now shall determine the normal
form N defining the space of tangent vectors to 9% in terms of n.

Let Z be a vector tangent to 0% at a point (z, p) in T*M and ~(t) a curve in T*M
with tangent Z at (z, p). The projection down to M of the curve «(¢) is another curve
A(t) = m - y(t) entirely in M. If Z has the form

Z:X“6M+YM% (128)
12

then the tangent to 4(t) at the point z of M is

d

= (£)= X", . (129)

From our definition of 0¥ in (127) we immediately know that this vector, (129), is
tangent to 9S5. As n,dz" is the normal form of 95 it follows that

n, X" =0. (130)

Let the normal form to 0% be N = Ny;dzM. As Z is tangent to 9%, it must be set to
zero by N i.e.

NyZM =N, X"+ N"Y, =0, (131)

Using (130) in the above expression tells us that N*Y, =0, for any Y ,. Consequently
it follows that N* = 0. In an abuse of notation, we can therefore identify

N = N,d2" =n,dz" =n (132)

as the shared normal form of 0¥ and 9.5. We shall make use of this normal form when
we consider charge conservation in section 4.6.
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4.5. Level sets of the Hamiltonian and Liouville’s theorem

Drawing together the developments in previous sections we now seek to achieve the
aim we detailed at the end of section 4.1; we want a volume form defined on the H = ¢
energy level sets, denoted voly-1(,), which is conserved under free particle motion in
H~(c). Such volume forms are naturally more ambiguous than in the relativistic case
as there is no Sasaki metric to aid us, nevertheless we shall isolate at least one suitable
candidate with all the reasonable properties one might desire.

Let X € T(T*M) be any vector which is tangent to the H = ¢ hypersurface. It follows
that

dH (X) = — (ix, ) (X) =0, (133)

from which we can define a class of normal one-forms

OH D OH OH
) + 17 m .
‘ { Pu Py (amu uvPp apy) dz :| , ( ; )

where ¢ is some arbitrary non-zero function of the hypersurface coordinates. We note
in particular that Xy is tangent to the H = ¢ hypersurface as

dH (Xu) = Q(Xy, Xg) =0 (135)

This is a special property of the Hamiltonian vector field based on its definition and
does not apply to general vectors. Moreover, as Xy is tangent to the H = ¢ surface, it is
straightforward to argue from the definition of the Lie derivative that a tensor defined
on H™1(c), acted upon by Ly, remains a tensor of the same type defined on H~!(c).

We now encounter a core ambiguity related to the Aristotelian nature of M; even if
we assume that the normal form (134) is well-defined up to scaling, without a bilinear
map such as a metric, we cannot map n uniquely to a vector. Compare this to the
relativistic case where we can find a unique vector V such that

n(X)=9g(V,X)=0, g(V,V)==+1, (136)

for any vector X tangent to the H = ¢ surface where ¢ is the Sasaki metric and the
sign depends on whether the surface is time-like or space-like. As ¢ is non-degenerate
and the surface is not null, V is unique. The Sasaki metric provides a canonical (basis
independent) map between the cotangent T*(TM) and the tangent bundle T'(TM).

With this said, consider a general vector V which, for want of a better name, we
shall term the Liouville quasinormal. Let V' contain at least some component that does
not lie tangent to a given level set of H i.e.

OH OH OH
dH = — — 417 s 1
V1= gy Vet ( R Y ap) VIO, (137a)
0
V=V"D,+V,— . 137b
f / apu ( )
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It is our eventual purpose to use V to define a volume form on H~!(c) via the
interior product

voly-1(¢) = " (v volr-p) (138)

where ¢: H=(c) — T*M is the inclusion map which is necessary so that voly-1(,) €
Q24+ (H=1(c))—the space of (2d+ 1)-forms defined on H~'(c). In particular, voly-1(,)
takes as arguments vector fields in T(H~!(c)) and not T(T*M). The pullback via the
inclusion map is thus an important detail so that the Lie derivative of VOIH—I(C) along
Xy remains in Q**1(H~1(c))—the space of (2d + 1)-forms defined on H~!(c).

That V is not entirely tangent to the H = ¢ hypersurface (137) is not much to go on.
A natural restriction we can impose on V is to require it satisfies the core property we
were searching for, namely, conservation of (138) under Hamiltonian flow. We embody
this in the following lemma:

Lemma 2 (Liouville’s theorem on the constant energy hypersurface). Any non-zero
Liouville quasinormal V to the constant Hamiltonian (H= c) hypersurface that satisfies

dH [Lx,V]=0, (139a)
induces a volume form voly-1., through (138) that satisfies Liouville’s theorem
EXHVOIHfl(C) =0. (139b)

Proof. The details are a minor modification of the proof presented in [39] for the
relativistic volume form on a constant mass surface. Essentially one acts as the volume
form (138) on vectors tangent to the levelset and then applies the Lie derivative along
Xy to the result. As the Lie derivative of V is tangent to the surface (139a), one can
show every resultant term is zero either by over-saturating forms with vectors tangent
to the surface, or by Liouville’s theorem (theorem 1) in 7M. O

For example, in the case of the relativistic particle, one can use the Sasaki metric to
find the canonical normal to the Hamiltonian level sets. It has the form [39]

1 0

N=—p,—
mpuapu

(140)

with m the mass and one quickly finds that £x, /N o< X. Subsequently, because the Lie
derivative of any vector field along itself vanishes identically i.e.

EXHXH = 0,

and dH|[Lx,N] o< dH[Xy] =0, the volume form voly-1(, in the relativistic case is pre-
served under integral curves of the Hamiltonian vector field.

More generally, given a Liouville quasinormal V, we can compute the Lie derivative
of this object along a generic Hamiltonian vector field. When restricting to our free
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Hamiltonians we find

v a v g
Lx,V =X} (vm + pr”a_%v” +V prpa>
+(Xp,0,V"—V¥9,X}") D,
v a v a
+T7,p, (Xﬁfa—pgv“ -V 3—%)(5) D,

9
op,

Vi (55t) i (141)

We require this to be totally tangent to the constant Hamiltonian level set—
independently of the geometry (including the connection) or the Hamiltonian (modulo
that the Hamiltonian be of the free type). Thus

B,
dH; [Lx,V] = X/'X? <vﬂvp b Vot VVRZVppg> =0, (142)

where we have used (121c¢).

The above conditions (142) are still quite loose. One additional condition that we can
impose to narrow down the choice is to require the Liouville quasinormal be a vertical
vector. This is a well-defined restriction (see appendix B) and makes the Liouville
quasinormal independent of any connection we impose on the base Aristotelian manifold
M. Another motivation for such a restriction is that the Hamiltonian vector field of the
free Hamiltonian (121b) kills anything which is horizontal i.e.

dH;[D,] =0. (143)

This aligns well with what is known from the relativistic case as the relevant normal
vector (140) in that situation also lacks a horizontal component; there are a large num-
ber of equivalent choices and this one seems reasonable, applies generically and, most
importantly, is convenient.

By restricting our Liouville quasinormal to be vertical, we now have

0
XFXfp <vﬂ‘/;) + Flywp,,%‘/:o) =0. (]_4:4)

Again, this is quite a loose constraint. Consequently, for further restrictions on V, we
can consider spacetimes with infinitesimal symmetries which we wish to preserve on the
Hamiltonian level-sets. This leads to the next proposition:

Proposition 4 (Level sets of the free Hamiltonians and Killing vector fields). Let

¢ be an Aristotelian Killing vector field (22) on M cmdéC be the uplift of this Killing
vector to T*M . The uplift is tangent to the level sets (Hy = ¢ hypersurfaces) of any H;.
Consequently, if the Liouville quasinormal additionally satisfies
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dH; [ﬁév} —0, (145)

i.e. the Lie deriwative is totally tangent, then the volume form on any constant free
Hamiltonian level set (138) is preserved along integral curves of &.

Proof. For a vector field to be tangent to a H = ¢ hypersurface, we require that

OH 0¢” 0OH
apﬂp” oxt  Oxt

AH |¢| = {H,F} = ¢ =0,

where we have used the Poisson bracket given in definition 3. For our free Hamiltonians

OH;

A} 8Hf
0 (pﬂhpapa)

dHf |:§ = W (,CgV)'“ + pﬂ (C&h)lwpy .
Consequently, whenever £ is a Killing vector (22), we have that é is tangent to the
H¢ = ¢ hypersurfaces.

For the volume form on the level sets of the Hamiltonian we modify our earlier proof
of lemma 2 replacing V by §. Upon using the fact that the canonical volume form on
T*M is conserved along & according to point 2 of proposition 2, and our constraint on
total tangency of the Lie derivative of V in the direction £ (145), we see that the volume

form is preserved along integral curves of é . [

Let us compute the flow of our vertical Liouville quasinormal along a Killing vector
field. We find

) aem\ 0
NV — I _ - 2 )
LV (g R apuvﬁvﬂ 33:”) T (146)

To fulfil our condition (145) we must then impose that

oE* 0
XE/ <£H8/AVV +Vu3y5“ —paa—;%%) =0. (147)
1"

We want this to be satisfied independently of the form of the free Hamiltonian (which
can depend on a large range of parameters) and also on the particular symmetries of the
base Aristotelian manifold. While far from a proof, this is strongly suggestive that the
vector V should be constructed from a basis of the free invariant vectors of (118b) with
coefficients that depend on the free scalar invariants (118a). Moreover, these invariants,
belonging to the vertical space, are independent of the arbitrary choice of connection.
While there are two such invariants, we note that in the relativistic case one has

1 0

10 148
mpﬂﬁpu ’ (148)

which is independent of the metric and built only from the second of the primitive
vectors. As we want to trivially match onto this case, and use the minimal amount of
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geometric information, we restrict our vertical Liouville quasinormals to be of the form

=0 0
V=uv (Vﬂp/“p“hﬂ py) p/L% (149)
"

which leaves us with one arbitrary function of the scalar invariants, v, to fix.

So far, most of the restrictions we have imposed have been geometric—mow we
request one that follows from conventions on the definition of Dirac delta distributions.
We first note that there is a way to define d-function distributions without invoking a
metric, in particular, let g be a test function and consider the case where there is a single
H =0 level set (the generalisation to more will be clear). The §-function distribution
(in general but we shall use the cotangent bundle as a placeholder) can be defined in
terms of an integral over the H =0 level set as

/T*MVOIT*]W (5(H)g;:/ C(gw) | (150)

H™1(0)
where w is the Gelfand—Leray form which can always be defined locally [27] by
VOIT*]\/] =dH ANw (151)

and ¢ is the inclusion map of the level set H~1(0) in T*M. Typically one chooses
w =iyvolpsy where X is any vector field satisfying dH[X] = 1. In cases where there is
a metric, the usual choice is something like

VH

~—— (152)
IVH|?

In our more general setting, using the normalisation dH[X] =1, we can establish the
identity

ix (dH N inOIT*M) =dH (X) ixvolp« s +dH Aixixvolr s
=dH (X) iXVOlT*A{ = 'Z:XVOIT*A,[ . (153)

In particular, upon rearranging, we have
iX (dH/\iXVOIT*]\l —VOIT*M) =0 (154)

for every vector X that contains a component which is not tangent to H~(0). However,
notice that this is a difference of 2(d 4 1)-forms, and is thus also a 2(d + 1)-form, or top
form, on T*M. The term in parentheses takes 2(d + 1)-arguments and is defined on
a 2(d + 1)-dimensional spacetime. The contraction of a non-zero 2(d + 1)-form with a
generic vector, including those not entirely tangent to the surface, cannot be zero. The
only way for the term in parentheses to be zero when contracted with a generic X is if
the relevant term is identically zero. Thus we establish that

dH A inOIT*]\/j = VOIT*]W . (155)

https://doi.org/10.1088/1742-5468 /ae1572 40


https://doi.org/10.1088/1742-5468/ae1572

The Hamiltonian mechanics of exotic particles

Given these conventions, we now impose that dH;[V] =1, where V is our vertical
Liouville quasinormal, to match what is conventional in the literature. This introduces
a normalisation for V,

OHy [ 0 ] OHy
dH¢|V|=—Dp, |vpp— | =v—p, =1, 156a
f[ ] apu : Opy apu : ( )
1
= V=g — (1560)
apup;t

where we assume that aHf ap, P # 0 so that v is well-defined (also for its pullback under

the inclusion map onto the H;'(0) hypersurface). Hence we find that

p# (9 pu a
o _ i | (157)
Dot O s puv” + 250 Dol pa Py

and it subsequently follows that

/ volpsp 6 (Hy) g := / volg t* (g) . (158)
T+ M

H; ' (0)

This is, of course, rather abstract and we shall apply it to a simple case below.

We start by considering the canonical volume form on 7% M given in local coordinates
n (108b). Employing the single dispersion relation Hamiltonians of (48a), in coordin-
ates adapted to the hypersurface (125), we find the conventional Liouville quasinormal
of (157) takes the form

1 0 0
*: _"_ ) 1
; —po+ 27228 l "m0 " 617] 159)

where we have without loss of generality set A =1. Consequently, the volume form on
H1(0) is the (2d 4 1)-form,

*

volg-1 () =dp A...AdpgAda® AL Ada?, (160)

where we have pulled back onto the surface using (48b). Let g(po,p) be a test function,
then we find the following expression

—/ dpg/\.../\dpd/\dxo/\.../\d:cd5(p0 H(ﬁ2))g(p0,ﬁ)

T*M

:/ dpi A Adpg AdzO AL A da? g( ﬁ), (161)
H; 1 (0)

exactly as we might have desired.

The Liouville quasinormal is, of course, a naturally ambiguous object; but this is
a problem of integral measures in general. In the case of a Galilean boost-invariant
theory we identify one among a class of (boost-invariant) integral measures but even
this measure is not more privileged than others as one can determine by multiplying the
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measure by an arbitrary function of the invariant p2. The relativistic case is different as
the only boost invariant measure is d%p/||]|. What matters is that this choice is shared
by all the models we consider. Because of the nice properties we have discussed here
we henceforth take V to be as in (157). This vector is covariant, vertical, a Liouville
quasinormal, reproduces the canonical normal vector of a relativistic theory in the
right limit and is expressed entirely in terms of quantities that are defined for all free

Hamiltonians'".

4.6. Current conservation from Liouville’s theorem

So far in our development we have uplifted symmetry generators (see section 4.2) and
closed surfaces (section 4.5) from the manifold up to the cotangent bundle. We make
our final uplifts here and show how to lift conservation of charge, and invariance of the
currents under Killling symmetries, from the base Aristotelian manifold to the level sets
of H;. This involves the following steps:

1. Defining an analogue of the particle current on phase space that is tangent to constant
energy hypersurfaces,

2. Showing that this phase space current is conserved under Hamiltonian flow—in par-
ticular, that a certain integral of this current over a closed surface embedded in
co-dimension one, constant energy hypersurfaces of the phase space is identically
zZero,

3. Showing how this surface integral can be rewritten as a surface integral in the base
Aristotelian manifold, which thus also vanishes by the previous point.

Once we reach this last point, we have a vector field in phase space whose surface
integral is identically zero independently of the shape of the surface. Therefore from our
work in section 2.3 this vector field satisfies a conservation equation.

Concerning item 1, let us define the vector field

Ji=f X, (162)

which will eventually be the uplift of the charge current on the Aristotelian manifold.
Here f is at this point an arbitrary function, but will become the one-particle distri-
bution function when we move to kinetic theory. For J to be tangent to the level sets
H;'(c) we must require that

dH; [Ji] = Xi (f) Xe=0. (163)

This represents a restriction on f to satisfy X;(f)=0; for a free Hamiltonian. For
example, any scalar function of our free scalar invariants (118a) trivially satisfies such a
condition. In particular, free particles flow along Xt in phase space and f can be chosen
to measure the probability of a particle following such a trajectory at a given point in
H 1(c). This completes task 1, we have defined a current on phase space which will
nominally represent the particle density.

10 With the notable single exception of Hamiltonians where pu‘;% =0.
’
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Let K be any vector field tangent to a constant energy hypersurface and ' C H; Le)
a closed subset. Consider the following integral

/ £KV01f N (164)

where, as we discussed previously, the Lie derivative along a vector tangent to a level
set of a tensor whose entries are in the corresponding hypersurface is also in the surface.
Thus, Lxvoly-1(, is a form on H~'(c). Using Cartan’s magic formula (32) we have

,C;CVOIf =d (i}CVOIf) — i;CdVOIf =d (i}CVOIf) y (165)

where the second equality follows because vol; is a top form on ¥’ and thus its exterior
derivative is zero. Consequently

/ E,cvolf:/ d(i,cvolf):/ 15 (ixvolg) | (166)
! /7 82/

where the last line follows from the generalised Stokes’s theorem (34), 9%’ is the bound-
ary of ¥/ and 3, is the pullback of the inclusion map

Ly 0% = X (167)

The pullback of the inclusion map is often implicitly assumed, but we have made it
explicit. Thus, independently of the form of K we have

/ Levol; = / & (ixevolr) (168)
/ 82/
Now, when we identify K with J; we see that

ﬁijOIf = E(fo)Volf = fﬁXfVOIf + X (f) volf =0, (169)

where the final equality follows Liouville’s theorem developed in the previous section
(lemma 4) and our constraint that J; be tangent to the H; '(c) (163). Thus (168)
becomes

/ iyvols = 0. (170)
ox’

which satisfies our goal in item 2—i.e. we have constructed a conserved integral in phase
space corresponding to Jt.

A natural question is what corresponds to J; on the base manifold M. This is
the content of point 3. To figure this out we are going to have to integrate over the
momentum variables to leave an object defined only on M, i.e. in terms of configuration
space variables.

Now rather than ¥’ being a generic closed submanifold in H; ' (c) we must restrict.
In particular, let S be a closed submanifold of M. With a minor generalisation of the
discussion in section 4.5 we can lift S to a closed submanifold of H; L(¢) if we modify the
definition (127) so that p belongs only to relevant constant Hamiltonian level set. Now
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Y’ refers to any such uplift and its boundary be 9%’. From the discussion in section 4.5,
if n is the normal form defining 95, then N =n,dz" is the normal form defining the
2d-dimensional surface 9%’ bounding the 2d + 1-dimensional submanifold ¥’ of H~1(c).

Having defined the region of the base manifold M that ¥’ corresponds to, we can
now return to trying to integrate out the momentum degrees of freedom in J;. As N is
the normal form to 9%’ we can write the volume forms in a patch near 0%’ as

volf = N Aixvolg , (171)

where 7xvols is the Gelfand—Leray form associated with some vector X that satisfies
N[X] = 1. Additionally, on this local patch we shall work in a coordinate system where

volf = N Aoy Avolp (172)

where oy is built only from horizontal forms i.e. dz*. Consequently, volp parameterises
the part of the volume form vol; involving integration over generalised momentum
restricted to the level-set. Once we are allowed to decompose the volume form as (171)
we can rewrite ¢*(isvolf) as

L (igvoly) = N(J) " (on) A (volp) = N (J) o, Avoly, (173a)
o, =" (on) €QY (M) , voly| .y = t* (volp)|,car € QTH(TEM) (173b)

where we have assumed that our inclusion map is such that the pullback of vol; can
be decomposed into the wedge product of a d-dimensional form on M and a (d+ 1)-
dimensional form vol, that at any point € M belongs to the forms on cotangent space
at z. In deriving this result we used that the pullback of the inclusion map on any normal
form vanishes and also that the pullback distributes across forms. Consequently,

/ i7vols :/ [/ vol, N[j]] o (174)
oz’ as | J T My

where T M]|; should be interpreted as the submanifold of ¥’ that consists only of
momenta in a given level set of Hy.

Having allowed ourselves a volume form that separates out the momentum degrees of
freedom, given any tangent vector K to H !(c) we can identify a corresponding current
K which, being defined on M, is dependent only on base manifold coordinates. This
current K is given by

n[K] = / vol, N [K] (175)
Ty Mg
for any surface S. As this is true for any surface we can then identify

K= vol, K | (176)
Tz MJ,
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up to matching across coordinate patches. It follows that

E}CVOlf:/ z';cvolf:/ n[K] Jn:/ s (igvolyr) (177)
X/ oy’ oS a8

for any vector K tangent to the Hy !(¢) hypersurface. Now once again we identify X
with J; and use (169) to show that

/ Lg (iJVOl]u) =0 (178)
oS

where J is defined by replacing K — J¢. This completes our aim of identifying the
current in M corresponding to J; and showing that a particular surface integral of this
current is conserved. Thus we have achieved item 3.

From our work in section 2.3, we know that given any vector J and closed subman-
ifold S, the following integrals are equivalent

/ 1% (i yvolas) = / volyy (V7% — S, JY (179)
a5 S

Moreover, as we have shown in (178), the left hand-side vanishes for any J defined in
terms of J; by (176), independently of the closed surface S and whichever among the
functions satisfying X¢( f) = 0 that we are considering. Thus, it follows from (179) that

V,JE =2k =0, (180)

i.e. the current J is conserved. Consequently, we can now think of the various J,
differing by choices of f, as the class of uplifts of a conserved current J from the base
Aristotelian manifold M to H; !(c). This completes items 1 to 3.

We now turn to generalising the above result from the number current to higher
currents. To generalise to the SEM tensor complex, and higher index currents in the
free case, notice that we can construct a vector current defined on a level set of H; in
the following manner

TIs (X1,..., X)) =p(X1)p(Xa)...p(Xy) f X5 (181)

where X1, ... X, are arbitrary vector fields on a given tangent space to M. The Lie
derivative of the volume form along J; is given by

Lzvoly = X¢[p(X1)p(X2)...p(Xs) f]volg

= P X1 oo X Xe ()

i=S

+> X7 (0 XEVXT) o (0 XU ) | ol (182)
i=1

in a local coordinate system where we have used

‘CXf (pMXﬂ) = X%/ v (puXu) = Xfl/puvuXu . (183)
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Assuming that once again X¢(f) =0, integrating the above over the uplift ¥’ of some
closed manifold S C M and applying Cartan’s magic formula we arrive at

oy’
_ / vol; [Z Ty XV, X" X0 =0, (184)
ol — Vs
t7(s)51___1/5 =Dy -- 'pl/stuf ’ (185)

which is the generalisation of (170) for s >0. When we considered the s =0 current, the
integral over ¥’ was identically zero, now there is a remainder coming from the vector
entries of Js. Using the decomposition of the volume form, and identifying

Top = [ vl (156)

V]...Vs
TFM|;

we arrive at the following relation

/ LgsiJ[Xl ..... XS}VOIM—/ [ZJ(S)LL XTIVHXIV’X;/‘* VOIM
85 S 1---Vs

1=1

=0. (187)

which is satisfied for any choice of f such that X¢(f) =0, any set of vector fields X
belonging to the tangent space of the manifold and closed surface S C M. This should
be compared to (44) where s =1.

Now we consider the generalisation of (179) to find

V]..Vs

/ Lgs(iJ[Xl,...,Xs]VOlM) = /VOIM <Vﬂ(J($)u XIMX;/S)
a5 S

= EZVJ(S)ffl,,,,,SXi/l . Xf) (188)
Rearranging this expression we arrive at
/ L*Si.][Xl ..... XS]VOIM—/ Z'](S)ff Vleyl...VMX;i...XSV‘*] VO]M
a8 s |50 L
= /SVOIM (VMJ(S)%;L“VS — Eﬁjl"](s)ﬁl...ué) Xi’l X (189)

If we apply (187) then the left-hand side of the equality is zero and we have a set of
conserved currents

VMJ(S)M

V]..Vg

—%0 Jgyr =0, (190)

V]..Vg

for any free Hamiltonian.
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We now turn to our last mathematical result, that invariance of f under the uplift
of a Killing vector implies that the base manifold currents are invariant under the Lie
derivative along the original Killing vector.

Lemma 3 (Invariance of the currents under Killing symmetries). Let £ be a Killing

vector and f its uplift, moreover let the decomposition of the constant hypersurface
volume form (172) hold. It follows that

£§\7Sﬁ ” = / Volp Xfup]/l . 'pl/sﬁéf (191)
v e,

for any higher current derived from a free Hamiltonian.

Proof. We first remind ourselves that é is tangent to the level sets of Hy and that the
volume form we constructed, voly-1, is invariant under the action of the Lie derivative

along é . X
Let us first replace Xt in (162) with &, so that our current is

Je=f¢.

This new current J; is tangent to the free Hamiltonian level set if £(f)=0 as can be
seen by acting on it with dH;. Following through the previous steps we arrive at

/ vol, fn,&" =n,E'F F= / vol, f
T M| T

Z'( ]\/Ilf

x

where we have used that nué“ =n,&" asn = N =n,dz”. Consequently, if £(f) =0, then
following the remaining steps of our earlier demonstration, one sees that

1
/VOI]W —8,1 (e§“F) =0.
S e

The Killing conditions imply (25) and consequently,

/VOlM ﬁgF =0.
S

For this to be true generally we have that £F' =0 whenever E(f)=0.

To demonstrate that the current J is invariant under the Killing field when é (f)=0
we define

Tee = X [V]E

where Y is any form defined on the base manifold. The Lie derivative along é of this
current is not zero when £( f) =0, but differs by the Lie derivative of Y i.e.

~

Ejﬁgvolf = f(Y#Xfu) VOlf = ﬁg (YH) XquOIf
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where we have used EéXf = 0. Moreover, the corresponding base manifold current to

Jc, 18

/ vol, N [T ] = / vol, f X{'Y,m, & =Y,n,&" vol, fX}'
T M|, T M|, T Ml

=Y, J'n[¢]

We can follow the usual steps noting that

/,VOIM ([')SY)M (/T*M vol, Xf“f> = /(95 Y [J|n[¢on = /85 v§ (iysevoly)
z Vg

1
/VOLM (EgY)MJMZ/VOh\/[ —6M (eYl,J”é““)
s S €
_ / voluy (Yo (Led)" + " (£eY),)
s

which finally implies
0= /VOlM Yyﬁgjﬂ s
S

for any Y, defined on the base manifold whenever £;(f)=0. Thus we conclude that
L¢JH =0 as desired. The higher currents, such as the gEM tensor complex, then follow
by replacing f — Xu[Y]p[Xi]...p[Xs]f and using the similar steps to our derivation of
J(g)l" . D

“Jvy.vs

This latter lemma is a crucial one as it relates space-time symmetries—such as
stationarity of the currents—to constraints on the one particle distribution function. It
forms a core part of the earlier section 3, being as it allows us to establish how the time-
like Killing vector which represents the fluid velocity leaves the constitutive relations
invariant. In reference to that section, we find that Hamiltonians in (123) on flat space
led to a conserved charge current and SEM tensor complex of the form

1 2hii OH
J“auz (E/ddpf> 675"’( - /ddp ﬁ)pjf>ai7 (192&)

1 ~ 1 |
749, ® da” = (g/ddpﬂf)6t®dt+ E/ddppz-f)ﬁt@)dwl

ik
+(2h /dd aHpka)ai@)dt

e b op*?
2n*k [ OH
+ . dp aﬁpjpkf 0y ®da’ (192b)

where we have used the volume form defined in (160) and set A= 1. Importantly, on a
flat background e =1 we see that the integral of the one-particle distribution function is
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just the particle number density—as one might have desired—and we reproduce (48f)
and (48¢).

As our final point, let us consider the generalisation of the standard distribution (64)
to arbitrary spacetimes and free Hamiltonians. In particular, we take

fo =l (193)

with B the uplift of a time-like Killing field. Locally, on a flat spacetime, the quantity
©[f] has the form

5T 1

© [B:| Npuﬁu = _pU 5# =7 (1717) ’ (194)

T )
where we have employed (55) and thus our generalisation reproduces (64) in the appro-
priate limit. In what follows we shall show that f satisfies

Lifs=Lx fs=0. (195)

This is exactly as desired for a stationary or ‘equilibrium’ distribution as it is independ-
ent of time (roughly /) and free particle motion (Xf).

In the relativistic case, the Lie derivative of the symplectic potential © (given in
definition 2) along the Hamiltonian vector field gives the derivative of the Hamiltonian.
This only follows because of the simplicity of the relativistic Hamiltonian. In that case
one can easily show that ©[3] is preserved along integral curves of the Hamiltonian
vector field. In our boost agnostic situation we must work harder to show that ©[3] is
conserved under the action of the Lie derivative along the Hamiltonian vector field. In
particular, computing the Lie derivative along X; one finds

,CXr@:d(in@)-l-Zer@ d(pMX'u)-i-ZXjQ d(pu ) dH; . (196)

It is easy to convince oneself that the first term is generally not proportional to the
derivative of the Hamiltonian by explicit computation

0% Hy ~ 0 H;
Lx,0 = H—— 4+ 2p, WDy =——— | V' Dp,
X; (puu 8(p)2 +2p D apgap)u P

8Hf 82 ~ O?H; \ -
2 puh Py h”?p,Dp, , 197
where we have employed (121¢). For generic Hy this is clearly not proportional to dHj.

Nevertheless, O[] will be conserved along Hamiltonian flows i.e. any scalar function of
this expression will be a solution to the Boltzmann equation as we now demonstrate:

Proposition 5 (Conservation of ©(3) along free Hamiltonian flows). If H; is a free
Hamiltonian and B the uplift of some Killing field B, then @[ﬁ] is conserved along
integral curves of both the Hamiltonian vector field and those of B.
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Proof. Let us begin with the second easier statement. Firstly, we notice that
£,0=d [%@} +i,d0=d [@ [ﬁ“ +i=dF —dF =0,

where we have used lemma 2 for the definition of F. The above identity holds for any
vector on which © acts, therefore

£:0 3] = (£;101) [4] +o258] =0,

where we have used that the Lie derivative of a vector field along itself is zero.
Consequently, O[f] is conserved along integral curves of (.

A

On the other hand, we can demonstrate conservation of O[5] along the free
Hamiltonian vector field by explicit computation in local coordinates where

e [B} :puﬁ“:F.
We find that
A1 OH; p OH; S
Lx.© [5] =, Lo+ G g PuLal

N

Employing the Killing conditions of (22) we see that this vanishes. Therefore ©[5], or
any function of this quantity, is constant along Hamiltonian flows. [

We also note that any function of the free invariant scalars (118a) will satisfy
invariance under flows of the Hamiltonian vector field and uplifted Killing vector.
Consequently there is a very large class of functions that are stationary with respect to
[ as is discussed in lemma 3. This is also true of the Galilean case and we must turn to
collisions to find further constraints, as we did in section 3.

5. Conclusions and outlook

In this work, we have established a general framework for Hamiltonian mechanics on
Aristotelian spacetimes, focusing on systems that lack local boost symmetry. We con-
structed invariant phase-space dynamics, introduced a class of free Hamiltonians, and
established a generalised Liouville theorem valid on reparameterisation-invariant con-
straint surfaces. We further showed that conserved quantities naturally arise from uplif-
ted Aristotelian Killing vectors, and that ensembles of exotic free particles yield ideal
hydrodynamic behaviour at leading derivative orders. Remarkably, the ideal gas law
emerges universally, despite the absence of any boost symmetry.

Our results reveal several directions for future investigation. On the technical side, it
would be important to extend the formalism to include interactions between particles,
analyse the role of torsion in kinetic and hydrodynamic equations, and explore coup-
ling to background gauge fields or external potentials. As we discussed in the intro-
duction we would like to revisit several formal results [42—44], generalise and demon-
strate their applicability in numerical simulations of classical exotic particles in the
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(quasi-)hydrodynamic limit. We also plan to develop the quantum version of our frame-
work and investigate quantisation on Aristotelian phase space, where the lack of Lorentz
or Galilei symmetry gives rise to novel structures.

A particularly important direction is the construction of a generating functional for
the conserved currents. By systematically varying the structure invariants, namely the
clock form 7, and the degenerate spatial metric h,,,, we expect to obtain all relevant cur-
rents, including the SEM complex, in a unified and covariant way. This would establish
a direct link between our geometric framework and effective actions for non-relativistic
fluids, and may enable the systematic inclusion of dissipative and higher-order effects.

Beyond formal developments, we expect our framework to have concrete applic-
ations. In particular, we propose applying boost-agnostic kinetic theory to systems of
active matter and collective motion. Many existing treatments of flocking, such as kinetic
theories derived from the Vicsek model, assume Galilean-invariant dispersion relations
to relate mass and momentum [7, 45-47]. We argue that this assumption is concep-
tually inconsistent: such systems are typically coupled to a medium or substrate and
lack boost invariance. The formalism developed here provides a natural and consistent
alternative, enabling a better understanding of non-equilibrium collective behaviours
and their emergent hydrodynamics [48].
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Appendix A. Local symmetry and Aristotelian manifolds

On a (d+ 1)-dimensional Lorentzian spacetime, one can, in principle, construct viel-
beins that carry a (d + 1)-dimensional vector representation of the Lorentz group at each
point. At the heart of what makes a (d+ 1)-dimensional Aristotelian manifold distinct
is that the vielbeins instead carry a reducible vector representation of the d-dimensional
spatial rotation group. In particular, let psiandard|[g] be the standard (or defining) irre-
ducible representation of O(d) given by d-dimensional, real orthogonal matrices and p
a reducible, matrix representation of O(d) by (d+ 1)-dimensional matrices acting on
RI*L. For example, one way to represent the action of O(d) is by

p:0(d) — GL (R™") | (A.la)
g ( é 0 ) : (A.1b)

Pstandard [g ]
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We note that {p[g]},c0(q 1 @ subgroup of O(d +1); in particular for every element

plg] there is an inverse which is given by p[g] ™' = p[g]? as p[g] is an orthogonal matrix.
Consequently, one will find three numerical invariants under the action of the spatial
rotation matrices, a (d+ 1)-dimensional vector which we denote by 7; a symmetric
(d + 1)-dimensional matrix 6 with signature (0,1,1,...,1), and trivially the (d+1)-
dimensional unit matrix. The non-trivial tensors satisfy

pldr=7,  plgdD(plg))" =6 . (A.2)

For comparison purposes, the Lorentz group of special relativity, O(1,d) has an irre-
ducible representation A :O(1,d) — GL(R!) that preserves the (d+ 1)-dimensional
Minkowski metric 7 i.e.

Algln(Alg)" =n, (A.3)

where g € O(1,d). Similarly, the Galilean group includes shear matrices that do not
have the form (A.1). A vector space with 7 and §(?) as defined above is an Aristotelian
vector space.

We remarked above that the matrices p[g], and the reducible representation of O(d)
that we are interested in, are orthogonal. Thus the action of O(d) on the dual space can
be represented by p[g]” as p[g]~! = p[g]’. Hence, on the dual vector space, we can also
identify three numerical invariants—a (d + 1)-dimensional vector which we denote by v;
a symmetric (d + 1)-dimensional matrix 0¥ with signature (0,1,1,...,1), and trivially
the (d+ 1)-dimensional unit matrix. The non-trivial tensors satisfy

vplgl" =v,  plg)" 6“plg) =6, (A4)

We can additionally choose to normalise v so that 7(r) = —1. This overall sign choice is
a convention to make analogies with Lorentz symmetry more natural. We can also use v
to impose constraints on 6. While there is no reason to think that 6 (v, X) =0 for a
given X, we can construct a new tensor h that has this property and is still a numerical
invariant. We introduce the left and right projectors

PR —§5+ver, PH =§+r0v, (A.5)
and subsequently define
h— POOPE | plRI§ plL) (A.6)

which are also numerical invariants under the reducible representation of O(d). These
new tensors satisfy the required property i.e.

h(v,X)=0, h(r,Y)=0 (A.7)

for all X and Y where X is any vector in the original Aristotelian space and Y an
element of the corresponding dual vector space.

Turning now to curved manifolds, we shall assume on some manifold M that patch-
wise we are given a smooth set of vielbeins

el = eidx“ , (A.8)
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in a neighbourhood of every point. Thus, at each point z on the manifold M this
introduces a basis, {eI }, of the cotangent space T M. Furthermore, given the basis of
the cotangent space {e[ } (the coframe (A.8)) at a point x € M, we can construct a dual
basis of the dual vector space, denoted {e;} (the frame), through demanding that

el (ey) =64, (A.9)

where 67 is the (d+ 1)-dimensional identity matrix. In general the vector field basis e;
defined by (A.9), will not form a coordinate system in the neighbourhood of a point
on the manifold. To see this when explicitly given such vectors, it is only necessary to
compute the action of the e; on themselves

ler,es] = Clyex (A.10)

which is the defining relationship of the anholonomy coefficients C%,. When the coeffi-
cients C%, vanish then the {e;} form a coordinate basis (coordinate derivatives commute
on a smooth manifold). In contrast, if the anholonomy coefficients are non-zero then
the basis vectors cannot be integrated to form a coordinate system.

Given some ordered basis {eI } on M this might not be the most appropriate to
work with. We can, without loss of generality, choose and/or replace the leading ele-
ment by e’ 7. Subsequently, the remaining elements {e’}/{r} can be acted upon
by the projector (A.5) to enforce v(span{e’}/{7})=0. As v spans the kernel of the
tensor h, defined in (A.6), one finds that A is a non-degenerate bilinear form on these
remaining elements. We can then perform the Gram—Schmidt procedure to create a new
orthonormal basis {eizl"“’d} such that

T(eo):T(V):_17 T(ei):O7 h(eoaX):O, h(ei,ej)zéij. (A.ll)

Using (A.9) we also have the dual basis {7,e;}. However, it is not necessarily the case
that ﬁ(ei,ej ) = 6. Nevertheless rather than using h defined in (A.6), which was some
tensor supplied to us, we can construct a new h = de; ® e; that transforms appropri-
ately under O(d). The following identity between coefficients in an arbitrary basis then
follows

BIKhKJ = 5§+VITJ (A12)

which relates the numerically invariant tensors of the vector space and its dual, with &7
the (d+ 1)-dimensional identity matrix.

With the symmetry structure explained, we can now use the frame and coframe to
define relevant tensors on the tangent and cotangent spaces to the base manifold M.
In particular, we define the components of the ‘structure invariants’ in the coordinate
basis to be given by

hyw = hUefLei , Ty 1= Tjei ) (A.13)
In other works [19, 21], the Aristotelian manifold is defined in terms of just the quantities
without explicit mention of the vielbeins { el } Subsequently, the existence of vielbeins
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is then at some point, almost always, assumed to allow us to define h (v is always
definable in terms of the kernel of k). We however have made this part of our definition
from the start. The inverse structure invariant components are defined by

v = vlel h = nlelel (A.14)

From these expressions we can derive (4) given in the main body of the text. This
construction we have pursued entirely encodes our physical intuition that a space locally
looks Aristotelian. Any space that did not allow us to perform these operations in a
local neighbourhood, or at least argue away such isolated points, we would reject as
being ‘unphysical’. It is this attitude that we shall hold from now on.

Our approach here should be compared to that taken by some other works such as
[49]. These authors, for example, start from 7 and h, defining the matrix 7,7, + h,, and
v as the covector such that h(v,-) = 0. From here h, as the block matrix of the inverse
VHUY 4 R s argued to exist.

Given our basis, we can construct a volume form:

Definition 5 (The volume form). Let our manifold M be orientable, and suppose we
are given an arbitrary set of vielbeins {eI } and we perform the construction above to
diagonalise this basis. We define the volume form on M to be

volyy =7 Ael AL nel, (A.15)

which in local coordinates takes the form of (5a).

The above discussion suffices to outline the necessary geometric concepts. We now
turn to the simplest notion of the derivative—the exterior derivative, which requires no
additional structure beyond the manifold being differentiable. The exterior derivative
acts on forms to produce higher forms in the usual way. In particular, the exterior deriv-
ative of coframe fields e/ can be expressed in terms of the anholonomy coefficients (A.10)
without having to introduce a connection (additional structure). To demonstrate this,
consider

(deI) (ej,ex) =€y (el (eK)) — ek (eI (e,])) —ef (les,ex]) = —C{]K , (A.16)

where d is the exterior derivative and we have used (A.9) and (A.10). It follows that
1
de’ = —§C’§Ke’]/\eK . (A.17)
In a coordinate basis this becomes
(a[u V] + CJKe,uell ) d.fC'u AN dﬂ;y = 0 s (A18)

which is an expression which will be useful shortly.
Now we wish to extend our notion of derivatives to vectors, and as such we need
to introduce an additional structure—a connection—and thus the covariant derivative.

https://doi.org/10.1088/1742-5468 /ae1572 54


https://doi.org/10.1088/1742-5468/ae1572

The Hamiltonian mechanics of exotic particles

Among the space of derivatives we shall suppose at least one is compatible with our
structure invariants i.e.

V,r=0, V,h=0, (A.19)

for any vector field v : M — T'M . Such covariant derivatives have the attractive property
that they preserve products between the structure invariants and vectors (e.g. angles,
spatial lengths and time intervals) along integral curves of any given vector field v.

Leaving aside structure compatibility for the moment, we can act on a given set of
frame fields e; with any covariant derivative of our liking. The connection coefficients
are defined by auto-parallel transport of the frame fields with respect to this covariant
derivative:

V.e; =:egwh; . (A.20)

The connection coefficients w}fl measure how the basis e; changes as we flow in the
respective directions of the basis elements'!. Given w?;, using linearity and the Leibnitz

rule, we can construct the directional derivative of any vector field, along any vector
field i.e.

Vou =V, ('Z,LJGJ) =l (e] (uJ) +w'I]guK) ey, (A.21)

where we have used the fact that u’ are functions on M and not vector components.
Moreover, employing the defining relationship between frame and coframe (A.9) we can
also determine the covariant derivative of the coframe elements

Ve = —wiel, (A.22)

allowing us to define the derivative of dual vectors. Standard techniques then extend
the covariant derivative of our choosing to arbitrary tensors.

Given the connection coefficients (A.20) and the relation (A.9), the torsion two-form
of the system is defined to be the quantity

0 :=de’ +wine’, wh = wh e (A.23)

This quantity describes how parallel transport of a vector can fail to be independent of
the path (see [50], chapter 7 for more details). It contains two parts—the failure of a basis
to become coordinates and torsion effects arising from the connection (second term).
Unlike in the relativistic case, where we can always explicitly construct a torsion-free
connection, there is no a priori reason to assume that torsion vanishes in our Aristotelian
cases. Thus we must bear the burden of carrying it with us. In particular, using our
definition of the torsion two-form (A.23) and (A.17), we find that we can write:

1
ol == (—§C§K - wﬁg) S (A.24a)

1 Note that w"f, is not necessarily antisymmetric in 1J.
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or in components,

2651{ = Zw{JK] - CLI]K ) e = %E@&KGJ Ael , (A.24b)
where the script on g indicates these are the torsion components with respect to ©;
as we shall see there is an annoying sign difference that appears when we define the
torsion components in terms of the antisymmetric part of a coordinate connection Fﬁy.
Importantly, if we pick a coframe e/ and a connection form w’, then the torsion is fixed
to a particular value.

What we have discussed thus far applies to any connection. Let us now return to
our desire to find a structure invariant compatible connection (A.19). Compatibility of

any such covariant derivative with the conditions of (A.19), using (A.20), means that
TJW'[] =0, hIKCU,I](—f—hJKw? =0, (A_25)

where we have stated that 7; and hy; are constant scalars on M toset V., 71 =V, hi; =
0. In the relativistic case we only have the latter equation with hj; replaced by the
Minkowski metric 77;;. These conditions tells us that at a point the connection coeffi-
cients must be a representation of the respective group (a reducible representation of
O(d) for Aristotelian spaces and an irreducible representation of O(1,d) for Lorentzian
spaces) but otherwise leaves how they vary in spacetime arbitrary. In the relativistic
case, because the connection can be entirely constructed in terms of the metric, this
missing information is supplied by the behaviour of the metric on the manifold under
the assumption that torsion vanishes. The Aristotelian case is more complex due to
both the fact that we have no basis to ignore torsion, and even in its absence there is
an ambiguity in the connection built from the structure invariants.

Suppose we have picked a connection form w§ that varies smoothly from one point
on the manifold to another—that is, we smoothly assign a matrix from the reducible
representation of O(d) on a (d+ 1)-dimensional Aristotelian vector space to each point

on our manifold M. Our next goal is to relate wg to the usual coordinate connection'?
defined by

V,0, = —T%,0, (A.26)

for a given coordinate basis {9, }. As the basis is arbitrary, we have v = v’

er = v'0, with
vl = v”eﬁ. Consequently, taking the covariant derivative projected along a coordinate

direction we find
V. (UIGI) = [0, + 07 (@ei + e{,w{u) 7] 9, , w{m = wﬂKeff , (A.27)

which upon comparing with the usual coordinate expression for the covariant derivative
implies

re, = e (8Mell, + el{wﬂu) ) (A.28)

12 We drop the additional vector in defining the covariant derivative from this point onward, with it being understood that a Greek
index indicates projection of the derivative along a coordinate direction which a uppercase Latin index indicate projection along a
non-coordinate basis direction.
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The above expression allows us to derive the usual coordinate space connection 17,
from objects that naturally represent the relevant local symmetries of the spacetime.
Using (A.25) and (A.28) it is straightforward to show that

V1, =0, Vihy,=0, (A.29)

as desired from a structure invariant compatible connection. Comparable expressions
are true for the inverse structure invariants. However, the canonical volume form vol,;
defined in (A.15) is generally not compatible with structure invariant compatible cov-
ariant derivatives. To see this we compute

VeJVOIMI = —wf,volM . (ASO)

There is no a priori reason'® to assume that w!; = 0.

We can further use (A.28) to express the connection '}, in terms of the clock-form
T4, the spatial distance hy,, and the coordinate components of the torsion 3. We first
write (A.28) projected entirely onto non-coordinate directions

I, = wl, +eley0, e“ , r J—eIeJFﬁV b - (A.31)

We note that the antisymmetric part of T'F; is just the torsion defined in (A.23),
) =20k ) = 2wk )+ 2eli e, 0,e (m{{n - Cﬁ) = Ser,  (A32)

where we have employed (A.18) and defined ¥ without the subscript © to be the anti-
symmetric part of the Christoffel connection; up to the earlier noted sign. The defin-
ition of the torsion © in (A.24) applies whether the basis is a coordinate basis or a
non-coordinate basis; thus if one picks a coordinate basis so that €%, = 0, then one sees
that

_ QFP

Yogr =X° R

T

(A.33)

The extra sign in (A.32) between a given non-coordinate basis and the coordinate basis
is due to the identity (A.28) which ultimately has its origin in the overall sign in the
definition of the anholonomy coefficients (A.10) and connection coefficients (A.20).

The expressions (A.25) tell us certain components of I'X; are entirely expressed in

terms of derivatives of the frame and coframe (i.e. no w’ components)

F JTK = eIeJa TN 5 F]PJhPK +F§Jhpj = eIeJeKa h’ﬂﬂ s (A34)
where in deriving the second expression we have used the following identity

(hipely + hicpey) )0 el = elfelef0,h,, = efeler-0,h,, (A.35)

13 This should be compared to the relativistic case where, if we define wyy, = TZIKL:J?'L, requiring that w§ is a local representation
of the Lorentz algebra implies w(;;) =0 or more usefully ' wrk = w% x=0.
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which can be obtained by differentiating (A.6) and acting with the coframe coefficients
on the result. Contracting the second identity with h subsequently leads to

Ul pyhoah™™ = —%EIMhL JhME — %2 arhorh™
+e’;e§eK ; 7 (Ovhop+ Oshuy — Oyhoy) | - (A.36)
Using the (d + 1)-dimensional decomposition of the identity given in (A.12), we find
s = —efele, Kwro,r,) -I—I’(U)hLMhA ;EthLMfLMK. (A.37)

Multiplying by appropriate transformation factors between frame, coframe and coordin-
ate bases, we arrive at the following expression:

1-
I R— —1/"8( Tv) + —hp)\ (8Mhm + &,hM — aph“)\)

nv

+ = hf’A (39, hre — Sahvo — E00 e ) — P07y - (A.38)
The second line is the Aristotelian version of the contorsion tensor from relativistic
theory i.e.
re oty _lye g A

] = 5 w = 5 LD 1% [;ﬂ_u} . ( .39)
We can equivalently derive this expression (A.38) directly in the coordinate basis as we
discuss in section 2.1, however in doing so we lose the importance of local symmetries.
Indeed, certain versions of the Newton—Cartan theory, describing Galilean gravity, have
exactly the same structure as Aristotelian spacetimes. What makes them differ is the
local symmetries.

For our structure invariant connection, we can see that the torsion is generically non-
zero; and forcing it to be will at least impose a constraint on the clock form. Crucially,
in the presence of torsion, certain familiar results from (pseudo-)Riemannian geometry
become more complicated. For example, the commutator of derivatives acting on any
tensor fields includes an additional term

j=m

01...0 _E : T o1.. U] 1ACj41...0m
[Vuav ]T . R,ul//\T

_ (71 -Om
z :RIWPz Pi—1APi+1--Pn

- EﬁyvATZ::::;,’,:" : (A.40q)
where we have defined the curvature tensor in the usual manner
0 . P 6%
Rlyo =2 (0410, +T0,,T5,) (A.40b)
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Extreme caution must be exercised by those familiar with relativistic physics in

manipulating Rj,, as common features of the Riemann tensor fail to hold for the

Aristotelian curvature tensor.
Lemma 4 (Collected properties of the curvature tensor). The Aristotelian curvature

tensor has the following properties:

1. The curvature tensor is antisymmetric in its first pair of indices

E‘;w)p =0. (A41)

2. The first and second Bianchi identities are

Rl = Vi — ZjwXa (A.42a)
ViRl = S Ban - (A.42b)

3. For a structure-invariant compatible derivative, the following combinations of com-
ponents of the curvature tensor vanish

R,,7o=0, (A.43a)
Ry phae + Riyghor =0, (A.43b)
Ry,,v" =0, (A.43¢)
Ry, P+ R\ = 0. (A.43d)

The first two properties are independent of whether the curvature tensor is structure-
invariant compatible but apply to connections with torsion. The final property depends
on the covariant derivative being structure-invariant compatible.

Proof. Our first point follows from the definition of the curvature tensor in terms of
the connection (A.40b). Notice that the other index symmetries of the Riemann tensor,
such as antisymmetry in the last two indices and symmetry under pair exchange of the
first and second index with third and fourth, do not generally hold.

To demonstrate the first Bianchi identity, we use (A.40a) and consider the tensor
V,¢ so that

Vs [V V)b = —V,59, Vo + 57, 5% Voo + RS, Vo) .

vp=uo vpu

By permuting indices and using the Jacobi identity,
[V/w [V,,,Vp]] + [Vw [vau]] + [Vm [V/uVVH =0, (A-44)
one soon finds that

R = Vi o

vp] [C:w pla

In other words, the first Bianchi identity for the Riemann tensor is only algebraic in the
absence of torsion. As for the second Bianchi identity, we use the Jacobi identity (A.44)
on a generic vector field X7 and employ (A.40a) to find
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0=1[V,, [VV,V X7+ [V, [V, VI X7+ [V, [V, V] X

o o )\ A A o
Vi R ]a/\)X (R[/wp} VinXy) +E[uv plo >V/\X

= (v
(v — 4, R X7,

where to arrive at the final line we have used the first Bianchi identity to eliminate
terms.

Regarding point three in our list—notice that (A.40a) and the compatibility of V
with 7, gives (A.43a). Meanwhile, when we replace c,, = h,, in (A.40a), and again
employing the compatibility of V with the structure invariants, we arrive at (A.43b).,
similar to the other identities. [

Appendix B. Horizontal and vertical spaces

We present here a brief discussion on the nature of horizontal and vertical spaces.
As a reminder, the cotangent bundle is the triple (M, T*M, x) with 7 :T*M — M the
projection map. This projection map has certain properties necessary for the triple to
be a fibre bundle [51]. Importantly, any fibre bundle comes equipped with a preferred
subset of vector fields—those that belong to the kernel of the projection map.

Definition 6 (Vertical vector field). Let dm: T, (T*M) — T, M be the differential of
the projection map at a point (x,p) € T*M. A vector Z € T{, ,(T*M) is vertical if it
belongs to the kernel of the projection map, Z € ker[dn].

In particular, in locally adapted coordinates, the differential of the projection map
takes a vector at (z, p),

Z =X"0, ] )+ Y o— 0 (B.1)
Opy (z.p)
and gives
dm(Z2) = X" 0y, . (B.2)
Consequently, a convenient basis for the vertical space is the set
8189” : (B.3)

There is one well-defined notion of a vertical space, however there are many notions of
the complementary horizontal space which we now define:

Definition 7 (A horizontal subbundle a.k.a. an Ehresmann connection). Let VM
be the vertical subbundle of a manifold M and T(7*M) the tangent space to the
cotangent bundle. A horizontal sub-bundle is any smooth subbundle of T'(7*M) such
that T'(T*M) = HM &V M where @ is the direct sum.
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Importantly, the horizontal bundle is not unique, which is related to the arbitrariness
of connections used to build covariant derivatives. Regardless, given a chosen horizontal
subbundle, we can use it to define the lift of curves [51] from the base manifold M onto
the cotangent bundle. Let v(\) be a curve in M with 2 = v(0). Select a point p € 7~ 1(x)
in the fibre over the point x. The horizontal lift of «v()\), denoted by 7()), is the curve
in T*M that passes through p such that the tangent to this curve is in the chosen
horizontal bundle and 7 o () = ().

Let us be more concrete and follow [39], taking vector Z in T(, ) (T*M). Let a curve
A(A) have the tangent vector Z at (z, p). This curve consists of the points (z(\),p(N))

where z(A) € M and p(A) € T} ,) M such that
@O w ) =ap) . (GO =) ma)

Let our manifold M be supplied with some connection V. Then we can solve for the
parallel transport of the covector £ along the curve x#(\) according to

1. the parallel transport equation
Vi€ (A) =0 (B.5)

for all A € [a,b],
2. with the initial value of {(a) = p(0).

Subsequently, the connection map at the point (z, p) acting on our initial vector Z
is defined by

Ky (2)= €N (3.6)

A=0

Using a locally adapted coordinate basis in which our initial tangent vector Z takes the
form of (B.1) we can write the connection map as [39]

[ dxt
Ka:, (Z) =|——V,lpv ()‘) dx”|$ 1
(z.p) ) “( (A)) A=0

_dl‘” v dx“ v

- ﬁV,Jou(>\) dz L:(Aﬁﬁp” W)V, do |”(A)L:o
[ d o dat ”

= [ ) Ly = G T 0L

= [Yl, —X“pyl“;p] da:”lx(O) : B0

Therefore, in local adapted coordinates, the connection map takes the form
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Just as in [39] we make the following observations:

1. The connection map does not depend on the curve.

2. The connection map is linear and maps the tangent space to the cotangent bundle
T2 p)T* M to the cotangent space at z, T;; M.

3. Vector Z belongs to the kernel of the connection map if and only if

, 0
J = ){'u |:8“+P“ppl/3_pp:| . (Bg)

Consequently, a suitable basis for a horizontal space defined through vectors that
belong to the kernel of the connection map is the set

(B.10)

0

D,| =0, +1 pp—
(2.) 0D | (o)

Importantly, this basis is dependent on the choice of covariant derivative (i.e. the

connection). A different covariant derivative leads to a different horizontal basis.

Finally then, we note that any vector Z in the tangent space of the cotangent bundle
can now be uniquely decomposed into

0

Z:ZNDM| %( )
Hi(z,p

+Y, (B.11)

(z.p)

as discussed in [39].

This is the point where the Aristotelian case significantly diverges from the relativ-
istic case. In the latter situation, one has the inverse metric which is an isomorphism
between 7'M and T, M. No such isomorphism exists in the Aristotelian case and thus
we cannot naively define the analogue of the Sasaki metric (the uplift of the space-
time metric to the phase space). Nevertheless, this decomposition into horizontal and
vertical components has physical significance as the Hamiltonian vector fields of free
Hamiltonians all belong to the horizontal subbundle.

Appendix C. The Hamiltonian of a free Lifshitz particle

A canonical example of a non-boost invariant Lagrangian is one with Lifshitz symmetry,
which is a form of generalised scale invariance [52-55]. In this section we shall slightly
generalise some of the results in [19] showing how they can be encompassed in the
formalism we have developed in this paper.

Let us first demonstrate how a suitable Hamiltonian formulation can be derived
from a reparameterisation and scale invariant action. In particular, let z#(\) be the
trajectory of a particle so that under a generic scaling transformation, the scalars of the
free Hamiltonian (121a) transform as

Tyt = ATt by dti — ARy, (C.1)
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Under a reparameterisation of the trajectory A = A(\’) these scalars transform as

/

A\
T2t — ?;)\\ Tt hyitc” — (3 ) hu,a'E" (C.2)

O\

where 2 = dz"/d)\'. Any reparameterisation (C.2) invariant action must necessarily
take the form

S = / d\ (r,@") L <M> (C.3)

for an arbitrary function L. However, under a scaling transformation the action trans-
forms as

B TSN
S = / X (1, ") AL (AWUM) . (C.4)

(7‘,@“)2

Subsequently, we also need L to be a homogeneous function of its argument for the
action to be scale invariant. In particular

i AQ(z—l)huvfbMi"; — A1, h/‘Lux; . (C.5)
(T, &H) ()

which fixes n = ﬁ For a given 2z, the only scale and reparameterisation invariant
particle action on a (d+ 1)-dimensional Aristotelian manifold is then

(hud ") premgy
1

S = /d)\ L., L.,= (C.6)
(T dh) =T
When z =2 we find
S = /d)\ ’;Zf (C.7)
i

as expected (see [56] for an approach to such actions and their distinct structures).
To confirm that the Hamiltonian obtained from our Lifshitz Lagrangian (C.6) van-
ishes identically, we first identify the generalised momenta:

L. 1 . L. \? 1
e Ry, = 2 . .
Pu¥ : Pult™ Py (2(2 — 1)) 1y i (C8)

The right-hand side of these expressions implies the following scaling behaviour:

put — Np, vt pﬂﬁ‘“’ — Aqu}Nl/Wpl, . (C.9)
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It is a straightforward calculation to compute the canonical Hamiltonian using the
Legendre transformation of the Lagrangian:
Hepyi'—L. = |—L.—— 1|-1.—0 (C.10)
: 2(z—1) z—1 ’
as expected.
To obtain a non-trivial Hamiltonian we must isolate the dynamical constraint obeyed
by the particles. In analogy with relativistic particles we notice that

- oNTEr 1 aNEr,
()™ = 1 (5) 7 o)™

zZ

1/ - N\
= 0=+~ (puh“”py) : (C.11)

This dynamical constraint between the momenta must be obeyed by every solution to
the equations of motion. Consequently, a suitable Hamiltonian to describe the motion
of Lifshitz particles looks like

1/ - z
H=\ (p,u/“ +— <puh“”pu> 2) ; (C.12)
«
where ) is an auxiliary field that enforces the constraint. The scaling of this auxiliary
field can be chosen such that the full Hamiltonian scales as
H— AN°H, (C.13)

which is the scaling behaviour dictated by our Legendre transformation. As we have
chosen our Hamiltonian to be given by (C.12), which contains just a single power of
the constraint (C.11), we quickly determine that the auxiliary field A is just a scale-
invariant constant. Had we taken some power of the constraint as our Hamiltonian, the
result would have been more complicated and the auxiliary field would pick up a scaling
behaviour.

Appendix D. Integrating momentum over the solid angle

A standard result from tensor calculus gives

/ DirDis * * * Pis, A
S(I*]

- Qd . d) Z 5(i1i25i3i4 cee 57:271,,1i2n) 9 (D.la,)
2

contractions
d
2

pl:\/ﬁ;—ﬁ’ :@7

where €, is the d-dimensional solid angle of .S d=1 — R?, p; is a unit vector in d-dimensions
and we summarize all possible ways to partition m indices into unordered pairs. When m
is odd there is an unpaired index and one should interpret the integral to be vanishing.

(D.1b)

https://doi.org/10.1088/1742-5468 /ae1572 64


https://doi.org/10.1088/1742-5468/ae1572

The Hamiltonian mechanics of exotic particles

In the presence of a non-zero velocity, the SO(d) symmetry of flat space is broken
to SO(d—1). Let the metric on the d-sphere be written in the following coordinate
system

ds® = d6* +sin (0)*dQ22_, . (D.2)

The spatial momentum indices can be projected parallel or perpendicular to the velocity,
so it is useful to work in a coordinate system that reflects this. In particular, let us write
the Cartesian components of p'in polar coordinates

i=d N
7= 7] (sin(@)' Ei+cos(9)2>, (D.3q)

v
i=1
Ey = cos(61) &, (D.3b)
Ei+1 =sin(61)...sin(0;_1)cos(0;) €41 , 1=2,...,d—2 (D.3¢)
Ey=sin(6y)...sin(0g_3)sin (04_2) s - (D.3d)

For a unit vector in particular we have
P =sin () pt +cos(0) . (D.4)

Using this decomposition and (D.3) we can determine the following integrals that we
employ in section 3.3:

/de cos™ (9) = 2 drm 2 Qd—15m62N N (D.5a)
(")
/ dQq p;-cos™ (A)sin™ (0) =0, (D.5b)
I'(SHT (%) Q4
ALl om -2 _ 2 2 d—1
/de p; py cos™ (0)sin” () = ) d+m5m62NHij ; (D.5¢)
where
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