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1 Introduction

The prototypical example of transport experiments in fluids most, if not all, of us are
accustomed to is that of charge transport across a piece of wire. Stripped to its essential
form, this experiment involves a charged fluid forced to flow by an external electric field ~E

where the electric field is always assumed to be external and linearised in amplitude.
In the absence of non-conservation of momentum, stability of the system requires

that we constrain ~E in terms of the derivative of the chemical potential µ. In this case
the background electric field effectively disappears from the dynamics, cancelled by the
chemical potential gradient in hydrostatic equilibrium [1], and therefore the fluid velocity
is independent of the applied electric field. This is not the case in real devices which
are open systems and, when attached to a voltage bias so that a current flows, achieve
stationary states by exchanging heat with their surroundings. In this work, we resolve this
paradox for the case of boost-agnostic fluids [2–7] and introduce stationary states where an
arbitrary external field and fluid polarization can co-exist. In particular, we find a new class
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of hydrodynamic stationary states for which the electric field is not completely opposed by a
chemical potential gradient as well as order zero in the hydrodynamic derivative expansion.
Importantly, these states exhibit charge and heat transport in the ground state, indicating
they provide the correct description for standard DC measurements. Furthermore, these
stationary states provide the basis upon which we can include dissipative corrections to
the hydrodynamic constitutive relations, upon breaking stationarity.

To achieve the goal of this paper, we must relax some familiar concepts from recent
studies of hydrodynamics. For example, turning on an order zero electric field pushes the
fluid out of equilibrium, by continuously pumping energy and momentum into it. To avoid
a “blow-up”, while keeping the electric field an externally imposed parameter that is not
completely balanced by the chemical potential gradient, we must introduce order-zero sinks
for the fluid energy and momentum. In addition, the order zero sinks necessarily break
boost invariance. Hence, our use of the boost-agnostic formalism [2–7] is not a choice, but
a requirement for a consistent hydrodynamic theory. As a result, the fluid’s spatial velocity
~v — which can be set to zero in boost invariant hydrodynamics — is now a parameter of
thermodynamic equilibrium. It follows that our theory of hydrodynamics describes fluids
with charge and momentum flow at zeroth order in the derivative expansion, contrary to
expectations from the boost-invariant formalism [1, 8]. With the addition of the energy-
momentum sinks, we can conceptualize our approach as the hydrodynamic analogue of the
Drude model of electron transport [9].

We wish to remain completely agnostic of the microscopic origins of our energy or
momentum sinks. Hence, our hydrodynamic description is applicable to as broad a range
of systems as possible with a single exception; we assume that the corresponding suscep-
tibilities given by varying with respect to the “hidden” degrees of freedom represented
by the relaxation terms are negligible. Consequently, these degrees of freedom are frozen
out and do not partake in the thermodynamics (nor hydrodynamics) of the system except
through relaxation of the hydrodynamic charges and currents. Put differently, the degrees
of freedom represented by the relaxation rates act somewhat like a bath for our fluid. It
is important to note however that the relaxation rates can depend on the thermodynamic
variables T , µ, ~v and ~E; it is only the hidden degrees of freedom (for example a trans-
lation breaking scalar) that our hydrodynamics must not depend upon. This is similar
to the situation in [10] in the context of charge relaxations, but opposite to the approach
than [11], in which the environment is taken to completely dominate the thermodynamics
of the system. In addition [12] discusses the steady state of an open system that loses
particles to the environment, albeit in a non-hydrodynamic approach.

Recall that within the Drude model, a steady state is reached only when the flow
velocity is constrained in terms of the rest of the system’s parameters. This feature of the
Drude model survives the hydrodynamic generalization, where we find that a stationary
state can be reached only when ~v is constrained as

vi = ΩE
(
T, µ,~v2, ~E2, ~v · ~E

)
E
i − Ωµ

(
T, µ,~v2, ~E2, ~v · ~E

)
∂iµ , (1.1)

where T is the fluid’s temperature and ΩE,µ are functions of the thermodynamical variables
fixed in later sections. Note that we included a chemical potential term on the right hand
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side of (1.1), because of the ability of ∂iµ to act as an effective electric field. The derivation
of eq. (1.1) follows the natural and normative way familiar from Lagrangian mechanics;
namely, we derive the conservative part of the system from a variational principle and
then add non-conservative forces by hand and enforce consistency with the equations of
motion and second law of thermodynamics. We see that the result of this analysis is a
velocity whose value can be chosen at will by fixing the rest of the thermodynamic param-
eters. In this way, our formalism mimics the boost-invariant formalism and explains why
boost-invariant hydrodynamics has been successfully used to describe condensed matter
experiments (see e.g. [13–19]).

One might object that by having such relaxation rates at order zero, our hydrody-
namic modes will become strongly decaying. Before addressing this issue, let us clarify the
meaning of strong and order zero. There are two senses of small which may be encountered
in hydrodynamics — small in amplitude and small in gradients. A quantity which is small
in amplitude need not be small in gradients and vice versa. Consequently, while our decay
rates are strong in the derivative sense, they can be small (even perturbatively small) in
the amplitude sense. In this way, our relaxation terms follow the traditional route in the
hydrodynamics literature. We emphasize this route is essential, for otherwise hydrody-
namics could not accurately describe flows in the presence of zeroth order backgrounds
fields, e.g. the flow of a fluid in a zeroth order, constant, external magnetic field. For the
cyclotron modes of such a theory to be amenable to a hydrodynamic description, i.e. to
avoid the formation of Landau levels, the constant magnetic field must be suitably small
in amplitude even though it is large in the derivative sense. See also [20–29] for further
discussions about external strong magnetic field in boost-invariant hydrodynamics .

Furthermore, hydrodynamic modes become decaying in many circumstances (external
magnetic fields see e.g. [30]), charge density waves (see e.g. [31, 32]), Wigner crystals (see
e.g. [23, 33, 34]), when considering non-zero wavevectors ~k (see e.g. [8] etc.) and yet we
expect a hydrodynamic framework to be a good approximation. What matters is not that
the mode is strongly decaying, but that the non-hydrodynamic modes are sufficiently deep
in the complex plane such that they can be approximately ignored. This can only be
stated analytically by knowing the position of the lowest lying non-hydrodynamic pole.
More pragmatically, we can simply check whether the hydrodynamic and measured AC
conductivity agree with each other. Regardless, if there is any hope for hydrodynamics
to explain standard DC transport measurements as discussed above, then there must be a
regime where such non-hydrodynamic modes are irrelevant. The analysis presented in this
work presumes such systems exist.

As a last comment, we note that the fluids we consider are stationary since there is no
entropy production. This can be demonstrated explicitly to be a consequence of the (non-
)conservation equations for energy, momentum and charge. When we discuss positivity of
the entropy current we will also see that this condition follows from requiring that the ideal
fluid does not produce entropy.

We proceed to the main part of this paper in the following manner: we first derive the
boost-agnostic hydrostatic constitutive relations, using the generating functional technique,
in the absence of any explicit energy or momentum relaxation in section 2. In the same
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section, we relax conservation of our hydrodynamic charges and impose (1.1) on the system.
In doing so we determine ΩE,µ in (1.1) in terms of hydrodynamic variables and generalize
the Drude result to hydrodynamic systems. Following that, we consider relaxation terms at
order one in derivatives in section 3 showing how our results must be extended and modified
before obtaining the DC thermoelectric conductivities in section 3.4. We conclude with a
discussion of our results and their applications in section 4.

2 Stationarity at the ideal level

In the present section, we use the generating functional formalism [35–37] to write down
the zeroth order constitutive relations for the stress-energy-momentum tensor and U(1)
charge current of our boost-agnostic charged fluids in hydrostatic equilibrium and in the
presence of an external electric field ~E. To use the hydrostatic generating functional we
need to geometrise the thermodynamics of the fluid. Since boosts are not necessarily part
of our fluid’s symmetries, we must formulate the problem in a boost-agnostic manner. Con-
sequently, we turn to Aristotelian geometry [2–7], which we review in the next subsection.
We proceed in subsection 2.2 with defining the thermodynamic fluid parameters and the
conditions they need to satisfy for the fluid to be in hydrostatic equilibrium. With the above
tools in hand, we construct the generating functional and derive the fluid’s constitutive re-
lations in 2.3. We finally relax the hydrostatic constraints and write down the hydrostatic
constitutive relations for generic energy-momentum relaxation in subsection 2.4.

2.1 Aristotelian geometry

Aristotelian geometry consists of a manifold equipped with a clock form τµ and a spa-
tial metric hµν , the latter of which has the signature (0, 1, . . . , 1). Besides lacking boost-
invariance, another reason for considering this geometry is that it naturally allows us to
separate out the spatial part of the fluid velocity by defining a laboratory frame aligned
with τµ. Thus we can define fluid frame invariant notions of energy and momentum such
as τµTµν . This is distinct from the usual relativistic case where the dual to the time trans-
lation vector is the fluid velocity one-form uµ and there is no obvious way to isolate the
spatial part of this velocity field from its temporal counterpart except by introducing a
field exactly like τµ.1 Moreover, Lorentzian, Galilean, Lifshitz and other geometries are a
special limit of these Aristotelian setups.

It will simplify some expressions if we assume that we can decompose the spatial metric
hµν with respect to vielbeins i.e.

hµν = δabe
a
µe
b
ν , a, b = 1, 2, . . . d (2.1)

with d the number of spatial dimensions. Subsequently, we assume that the square matrix
(τµ, eaµ) is invertible and thus obtain (−νµ, eµa) obeying the following conditions

νµτµ = −1 , νµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba , (2.2)

1This is usually achieved by working in Cartesian coordinate system, with τt = 1, and identifying
uµ = (1, vi)/

√
1− ~v2.
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and the completeness relation
− νµτν + eµae

a
ν = δµν . (2.3)

We can also define
hµν = δabeµae

ν
b (2.4)

which is not the inverse of hµν , but satisfies

hµρh
ρν = δνµ + νντµ . (2.5)

As we see from right-hand side of eq. (2.5), hµρhρν is a projector normal to τµ. Thus we
can think of hµν as the inverse of hµν only on the spatial hypersurfaces defined by the
clock-form τµ.

We introduce a metric compatible covariant derivative into our spacetime, constrained
via the following properties:

∇µτν = 0 , ∇µhνρ = 0 . (2.6)

Connections compatible with these conditions have the form

Γλµν = −νλ∂µτν + 1
2h

λκ (∂µhνκ + ∂νhµκ − ∂κhµν) + 1
2h

λσYσµν , (2.7)

where Yσµν is a otherwise arbitrary tensor [38] satisfying(
hρσhλν − hλσhρν

)
Yσµν = 0 . (2.8)

One can check explicitly that (2.7) transforms as a connection if Yσµν transforms like a
tensor. Because Yσµν is arbitrary, so is the connection. This should be compared to the
usual pseudo-Riemannian case, where torsion freedom Γλ[µν] = 0 and metric compatibility
∇µgνρ = 0 with the pseudo-Riemannian metric gµν uniquely determines a preferred con-
nection (the Levi-Civita connection). Consequently, the physics in a curved Aristotlean
spacetime can depend on the arbitrary choice of connection [6, 7].

To fix our choice of a connection, we also require metric compatibility of the dual
vector νµ and spatial inverse hµν , i.e.

∇µνν = 0 , ∇µhνρ = 0 . (2.9)

This choice makes identifying independent scalars in our generating functional significantly
easier. Following [6], a suitable ansatz for the affine connection has the form

Γλµν = −νλ∂µτν + 1
2h

λκ (∂µhνκ + ∂νhµκ − ∂κhµν)− hλκτνKµκ + Cλµν (2.10)

where Kµν is the extrinsic curvature defined by

Kµν = −1
2Lνhµν (2.11)

and
Cλµντλ = 0 , Cλµνhλρ + Cλµρhνλ = 0 . (2.12)
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A particularly simple solution for Cλµν is taking Cλµν ≡ 0 i.e.

Γλµν = −νλ∂µτν + 1
2h

λκ (∂µhνκ + ∂νhµκ − ∂κhµν)− hλκτνKµκ . (2.13)

To conclude our short overview of Aristotelian geometry, we note that in our current
work we are interested in “flat spacetimes” i.e. ones where the elementary tensor structures
reduce to

τµ = δ0
µ , hµν = δiµδ

j
νδij , νµ = −δµ0 , hµν = δµi δ

ν
j δ
ij . (2.14)

In particular, our choice of tensor structure physically means that laboratory time is aligned
with τµ and that hµν can be used as a spatial Euclidean metric. Essentially, in the flat
space limit, we generally reduce to a Cartesian coordinate system where ∇µ = ∂µ so that

∂µτν = 0 , ∂µhνρ = 0 . (2.15)

We shall call this the flat space cartesian co-ordinates or FSCC limit for short. In the FSCC
limit, the precise choice of connection becomes a moot point regarding the final result.
However, having the curved space expressions, albeit not the most general such expressions,
is necessary for computing the variation of the hydrostatic generating functional. More
precisely, notice that our connection of choice (2.13) has non-zero torsion, Γρ[µν] 6= 0, which
contributes to our first order generating functional.2

2.2 Geometrising thermodynamics

We can now express our thermodynamic quantitites in terms of the geometric quantities
(τµ, hµν , Aµ). First, we must define the notion of stationarity. To this end, we introduce
the time-direction associated to the fluid’s dynamical evolution in terms of the thermal
vector βµ.3 We require βµ to play the role of a Killing vector in our spacetime. That is
the Lie derivative with respect to βµ, Lβ , vanishes when acting on any geometric object
in the theory. When this condition holds, our theory is stationary with respect to βµ.4 In
particular, acting on the sources we have

Lβτµ = 0 , (2.17a)
LβAµ = 0 , (2.17b)
Lβhµν = 0 , (2.17c)

as constraints on our geometry in addition to the usual Bianchi identity,

∂[µFνρ] = 0 . (2.18)
2For example, when moving from partial to covariant derivatives, we can generate additional torsion

terms such as
∇µV µ = 1

e
∂µ (eV µ) + Γν[µν]V

µ . (2.16)

where e = det(τµ, eaµ).
3E.g. in terms of Hamiltonian mechanics, where dynamical evolution is given by the Poisson bracket

with the fluid Hamiltonian H, we have {H, •} = −βµ∂µ.
4Note that due to the lack of boost invariance, stationarity with respect to βµ does not imply stationarity

with respect to any other vector.
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Up next, we define the temperature T and chemical potential µ of the fluid as

T = 1
τµβµ

, (2.19a)

µ = T (Aµβµ + ΛV ) , (2.19b)

respectively, where ΛV represents the choice of U(1) gauge. Meanwhile, we take the fluid
velocity to be proportional to the Killing vector and normalise it by setting

uµτµ = 1 , (2.20)

such that, with (2.19a), we can identify

uµ = Tβµ . (2.21)

Employing the completeness relation (2.3) and the normalisation condition, (2.20), we can
also decompose the fluid velocity into

uµ = −νµ + vaeµa , vµ = uµeaµ (2.22)

with ~v = vaeµa∂µ the spatial velocity. In the FSCC limit, the velocity reduces to uµ =
(1, vi).

We define the electric field in the laboratory frame as

Eµ = −Fµννν , Fµν = 2∂[µAν] = Eµτν −Eντµ , Ea = eµaEµ , (2.23)

which in flat space with a suitable coordinate choice takes the form Eµ = (0,Ei).
The fact that the electric field can be constant in the reference frame of the laboratory

observer is one manner in which boost invariance is broken (see [27] for an explanation
in the case of relativistic fluids). Note, that our electric-field definition is different than
the one typically encountered in the relativistic fluid literature, where Fµνuν = Eµ. The
electric field Eµ is entirely transverse to the fluid velocity, unlike in our scenario.

With these definitions for the thermodynamic variables we can reformulate the hydro-
static constraints (2.17) in terms of the thermodynamic parameters. First, we consider the
hydrostatic constraint on the temperature T in eq. (2.19a). With the help of (2.17a), we find

∂µT

T
− uν (∂ντµ − ∂µτν) = 0 . (2.24)

We can make this expression manifestly covariant by rewriting everything in terms of co-
variant derivatives as

2uνΓρ[νµ]τρ = ∇µT
T

. (2.25)

This result is intuitively correct, given the role of torsion as a deformation of the transla-
tion algebra [∇µ,∇ν ] = −T ρµν∇ρ. Essentially, eq. (2.25) tells us that a deformation of the
time direction, i.e. of temperature, due to the flow can be compensated by a deformation
in the translation group algebra, i.e. torsion. Equation (2.25) also tells us that torsion
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is not an independent quantity in the hydrostatic limit. We use this observation when
working at first order in derivatives in section 3 to eliminate torsion terms from our list
of independent scalars entering the first order generating functional. In the FSCC limit,
eq. (2.24) simplifies considerably

∂µT = 0 . (2.26)

Up next, we consider the hydrostatic constraints on the chemical potential µ (2.19a)
. Employing the Killing constraint (2.17b) on the gauge field and the definition of the
electric field (2.23), we determine that

Eµ − T∂µ
µ

T
= Eνu

ντµ . (2.27)

This constraint shows us that the ∂µµ and its derivatives are not independent variables in
hydrostatic equilibrium, as they can always be expressed in terms of the electric field Eµ
and temperature. In FSCC, the set of constraints represented by (2.27) can be written as

∂tµ+ vi∂iµ = 0 , (2.28a)
~E · ~v + ∂tµ = 0 , (2.28b)

~E− ~∂µ = 0 , (2.28c)

where we have employed (2.26). These are not all independent and, for example, the
second constraint is easily recovered from the first and third. Their physical content is thus
two-fold, i) the chemical potential is conserved along the flow and ii) the applied electric
field ~E must be balanced by a gradient for the chemical potential −~∂µ in hydrostatic
equilibrium. These constraints imply that the chemical potential gradient is actually order
zero in derivatives.

This is the boost-agnostic version of what already happens in relativistic theories [1].
In particular, in a theory with Lorentz symmetry, the existence of stationary state requires
that

Eµ − T∂µ
(
µ

T

)
∼ 0 +O(∂) . (2.29)

This means that any departures from equilibrium, where the above is expression is zero,
must be counted as at least order one in derivatives. While an explicit derivative appears
acting on the chemical potential in the above, this does not mean that the derivative of
the chemical potential is necessarily order one in hydrodynamic derivative counting. To
determine the derivative order of ∂µ(x), one must see how the chemical potential µ(x)
varies in spacetime. For a non-zero electric field to be compatible with equilibrium and
enter into the equation of state the derivative of the chemical potential must be order zero
so that (2.29) can be satisfied locally. This is the reason why in table 1 both µ and ∂νµ
are considered order zero quantities, as a consequence of (2.28c).

We now turn to the hydrostatic constraint on the electric field Eµ i.e. Lβ(Eµ) = 0.
If we had taken the electric field to be order one in derivatives, this constraint would not
be relevant to the derivative order we are interested in this paper. This is because the
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resulting constraint would then be of order two. As our electric field is zeroth order in
derivatives, constancy along βµ yields

0 = uν∂νEµ +Eν∂µuν −
Eνu

ν

T
∂µT . (2.30)

Explicitly covariantising this expression we obtain

2uνΓρ[νµ]Eρ = uν∇νEµ +Eν∇µuν −
Eνu

ν

T
∇µT (2.31)

which again we can use to eliminate torsion terms in our first order action. Moving to flat
space we readily find

0 = ∂tEi + vj∂jEi +Ej∂ivj , Ei∂tv
i = 0 . (2.32)

Additionally, the electric field Eµ must obey the Bianchi identity dF = 0. This has the
general form

0 = ∂[µEν]τρ +Eν∂[µ τρ] + ∂[νEρ]τµ +Eµ∂[ρ τν] + ∂[ρEµ]τν +Eρ∂[ν τµ] . (2.33)

Covariantising this experssion leads to

EσΓσ[νµ]τρ +EρΓσ[νµ]τσ + cyclic(µ, ν, ρ) = ∇[µEν]τρ + cyclic(µ, ν, ρ) , (2.34)

where we have employed the metric compatibility of τµ i.e. ∇µτν = 0. Contractions of
eq. (2.34) yield additional constraints we can use for the construction of the generating
functional. As eq. (2.34) is completely antisymmetric, the only structure we can contract
it with to yield a non-trivial result is uµννhρσEσ. Consequently,

−ννhραEαΓσ[νρ]Eσ = ννhρσEσ∇[νEρ] − uµhρσEσ∇[ρEµ] +E2uµννΓσ[νµ]τσ

−uµhρσEσΓα[ρµ]Eα + (E · u)ννhρσEσΓα[ρν]τα , (2.35)

which again allows us to eliminate torsion terms. Meanwhile in FSCC the Bianchi iden-
tity (2.33) reduces to

∂jEi − ∂iEj = 0 . (2.36)

Finally, we impose hydrostatic constraints on νµ and hµν . The Killing constraint
evaluated on νµ reads

0 = uν∂νν
µ − νν∂νuµ + uµνν

∂νT

T
, (2.37)

or in explicitly covariantised form

− 2uνΓµ[νρ]ν
ρ = uν∇ννµ − νν∇νuµ + uµνν

∇νT
T

. (2.38)

In flat space, (2.37) reduces to the following independent constraint

∂tv
i = 0 , (2.39)

which generalizes the second equation in (2.32).
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For our last constraint, we consider hµν , i.e. (2.17c). The resultant expression evaluates
to

Luhµν −
uρ

T
hρν∂µT −

uρ

T
hρµ∂νT = 0 (2.40)

or

2uσΓρ[σµ]hρν + 2uσΓρ[σν]hµρ = −∇µuσhσν −∇νuσhµσ + uρ

T
hρν∇µT

+uρ

T
hρµ∇νT . (2.41)

Again, in flat space we find the independent constraint

∂ivj + ∂jvi = 0 . (2.42)

where we have employed ∂µT = 0. Equation (2.42) is nothing more than the boost agnos-
tic version of the usual Killing condition on the velocity found in relativistic hydrostatic
fluids [35].

Summary of the hydrostatic conditions in flat spacetime. For convenience, we list
here all the independent hydrostatic conditions in the FSCC limit. Firstly, any scalar quan-
tities must satisfy Lu(. . . ) = (∂t + vi∂i)(. . . ) = 0. Then, additionally, we have shown that:

∂µT = 0 , ∂tv
i = 0 , ∂ivj + ∂jvi = 0 ,

∂iEj − ∂jEi = 0 , ∂tEi + vj∂jEi +Ej∂ivj = 0 , (2.43)

and
Ei − ∂iµ = 0 . (2.44)

In the following sections, we use these constraints to write down the most general hy-
drostatic effective action for our fluids. In appendix A we also explicitly check that the
resulting fluids identically satisfy the hydrodynamic equations of motion in the hydrostatic
regime, thus explicitly demonstrating that a zeroth order electric fields is compatible with
hydrostatic equilibrium.

2.3 Hydrostatic constitutive relations

Now that we have all the hydrostatic conditions (2.43), we can apply the generating func-
tional method. To do so we must construct a scalar functional W out of the independent
scalars built out of our thermodynamic quantities and their derivatives. In particular, we
build W out of the scalars presented in table 1.

Restricting ourselves to zeroth order in derivatives, we define the zeroth order gener-
ating functional W(0) in the presence of the sources (τµ, hµν , Aµ and Fµν) to be

W(0)[τ, h,A, F ] =
∫
dd+1x e P (T, µ, hµνEµEν , hµνuµuν ,Eµuµ) (2.45)

≡
∫
dd+1x e P

(
T, µ, ~E2, ~v2, ~v · ~E

)
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Elementary Composite
Scalars: T, µ hµνu

µuν , hµνEµEµ, Eµu
µ

One-forms: τµ, Eµ, ∂µµ hµνu
µ

Vectors: νµ, uµ hµνEν , h
µν∂µµ

Covariant 2-tensors: hµν τµτν , τµEν , τµ∂νµ . . .

Contravariant 2-tensors: hµν νµνν , νµuν , uµuν

Table 1. Independent in principle scalars, vectors and tensors at zeroth order in derivatives. We do
not include the gauge field as it is not gauge invariant and can only enter the generating functional
as an antisymmetrised derivative (electric field) or Wilson loop (chemical potential). The generic
terms that can appear in the order one generating functional are given by taking the covariant
derivative of the elementary scalars and contracting the result with the elementary & composite
quantities to give scalars.

with e = det(τµ, eaµ). By varying the above generating functional with respect to the
background sources we define the following one-point functions

δW(0)[τ, h,A, F ] =
∫
dd+1x e

(
−Tµδτµ + 1

2T
µνδhµν + JµδAµ + 1

2M
µνδFµν

)
, (2.46)

where Tµ is the energy current, Tµν is the stress-momentum tensor, Jµ the U(1) charge cur-
rent andMµν the magnetization density tensor. Some parenthetical comments about (2.45)
and (2.46) are in order. Firstly, in (2.46), the field strength is not independent of the gauge
field Aµ and thus there is some overcounting of degrees of freedom; in particular the final
term can be integrated by parts to give a current-like term. Nevertheless, separating these
quantities in this manner is quite useful as Fµν consists only of gauge invariant degrees of
freedom while Aµ includes non-local terms like the chemical potential.

Out of the energy current and stress-momentum tensor, we can assemble a “stress-
energy-momentum” (or SEM) tensor as the combination

Tµν = −Tµτν + Tµρhρν . (2.47)

Notice that Tµν is still symmetric in its spatial indices since we are assuming rotational
invariance of the microscopic theory. Additionally, we can decompose Mµν as

Mµν = νµPν − ννPµ + hµρhραh
νσhσβM

αβ (2.48)

where Pµ is the polarization vector and the final term can be further decomposed into
magnetisation scalars, vectors, tensors etc. In what follows, only Pµ will be non-zero since
we are not considering magnetic fields in our setup.

Secondly, we should make note of the unusual (to the literature) choice for the discrete
symmetries of our setup. Our theory does not have parity-breaking parameters, so all the
scalars in (2.45) are P-even. However the scalar ~E · ~v is T -odd, which means that the
thermodynamics, generally, will not be time-reversal covariant. By this we mean that the
pressure need not have a definite sign under time-reversal. This is also true for (1.1) if we
make generic choices for the Ω terms and in such cases one should not expect the Onsager
relations to hold.
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With that said, requiring W(0) to be diffeomorphism and gauge invariant yields (non-
)conservation equations for the SEM and the charge current

e−1∂µ
(
eTµρ

)
+ Tµ∂ρτµ −

1
2T

µν∂ρhµν = FρµJ
µ , (2.49a)

e−1∂µ (eJµ) = 0 , (2.49b)

where we have employed (2.46) and (2.47). In addition we have the following conservation
equation for the polarisation

e−1∂µ∂ν
(
2eν[µ

P
ν]
)

= 0 . (2.49c)

These equations are covariant which can be shown by replacing the partial derivative by a
suitable covariant derivative as discussed in [6].

Combining the explicit form of W(0) (2.45) and the definition of the 1-point func-
tions (2.46), we can derive the constitutive relations for our fluid. In doing so, we use the
following variations with respect to the background sources

δT = −Tuµδτµ , (2.50a)
δuµ = −uµuνδτν , (2.50b)
δEµ = Eµν

ρδτρ − τµEνhν(ρνσ)δhρσ − (∂µδAν − ∂νδAµ)νν , (2.50c)
δhµν = −hµρδhρσhσν + 2ν(µhν)ρδτρ , (2.50d)
δνµ = νµννδτν − hµ(ννρ)δhνρ , (2.50e)
δµ = −µuµδτµ + uµδAµ , (2.50f)

δe = e

(
−νµδτµ + 1

2h
µνδhµν

)
, (2.50g)

and recall the identities

νµ = −uµ + hµρhρνu
ν , (2.51a)

Fµν = Eµτν −Eντµ . (2.51b)

We find the following expressions for the constitutive relations at zeroth order in derivatives

Tµ = εuµ + (P −PσEσ)hµρhρνuν , (2.52)

Tµν = Phµν + ρmu
µuν − κEhµρEρhνσEσ − 2βPEρhρ(µνν) (2.53)

and

Tµν = −εuµτν − (P −PσEσ)hµρhρσuστν + Phµρhρν + ρmu
µuρhρν

−κEEαEβhαµhβρhρν − βPEαhαρνµhρν (2.54a)

Jµ = nuµ + 1
e
∂ν
(
2eν[µ

P
ν]
)
. (2.54b)
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In (2.54), P is the fluid pressure, ε its energy density, ρm its momentum density5 and n its
charge/number density. In thermodynamic equilibrium, they are defined as

n =
(
∂P

∂µ

)
, ρm = 2

(
∂P

∂~v2

)
, s =

(
∂P

∂T

)
, (2.55)

βP =
(

∂P

∂(~E · ~v)

)
, κE = 2

(
∂P

∂~E2

)
, (2.56)

where s is the entropy density of the fluid. Together they satisfy

ε+ P = sT + µn+ ρm~v
2 + κE~E

2 + 2βP~E · ~v .

The parameters κE and βP do not appear in the hydrodynamics literature. To understand
their physical meaning, we note that we can write the momentum and polarization of the
fluid as

~P =
(
∂P

∂~E

)
= κE~E+ βP~v , (2.57)

~P =
(
∂P

∂~v

)
= ρm~v + βP~E . (2.58)

Notice that in the present case the system can have a non-zero polarization even when
there are no external electromagnetic fields, purely due to the velocity. This effect can be
traced back to the fact that our thermodynamics is T -odd. If we instead insist in having
a theory that is time-reversal invariant (so the pressure depends on even powers of ~E · ~v)
then βP would depend on odd powers of ~E · ~v and disappear at zero electric field. This
is exactly the same effect observed in [1] for a relativistic fluid, in which the scalar E · B
breaks time-reversal and thus the system can have a non-zero polarization at zero electric
field given by the magnetic field alone.

In terms of the momentum and density of the fluid, we can re-express the definition of
the energy density ε (2.55) as

ε+ P = sT + ~E · ~P+ ~v · ~P + nµ . (2.59)

Subsequently we have that

dP = sdT + ndµ+ Pidvi +PidEi . (2.60)

These are nothing more than the Gibbs-Duhem relation and 1st law of thermodynamics
for our fluid, respectively.

Some comments regarding our constitutive relations (2.54) are in order. First, we note
that the spatial momentum ~P in our formalism is an observable quantity with a definite
value. This contrasts the boost invariant case, where we can generally choose a frame for
which ~P vanishes in global thermodynamic equilibrium. Second, the derivative term in
the current is the polarization contribution to the bound current [1]. Equation (2.54b)
together with (2.49c) then imply that the free charges (parametrised by n) and the bound

5ρm is called kinetic mass density in [2].
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charges, i.e. the polarization, are separately conserved. Moreover, there is a subtle point
worth noticing about the constitutive relations in (2.54). Typically the velocity field uµ is
an eigenvector of the SEM tensor at lowest order in derivatives. Imposing this at higher
orders constitutes the so called Landau-frame choice. However, for our fluid

Tµν u
ν = −

(
ε− ρmu

2 −P ·E
)
uµ + (P ·E− βP(E · u)) νµ

−κE(E · u)hµνEν . (2.61)

In the absence of the electric field one finds that the fluid velocity is indeed an eigenvector
of the SEM tensor with an eigenvalue that comprises the energy density minus the kinetic
energy density. Yet, in the presence of the electric field this is not the case and the naive
Landau frame does not exist for our fluid.6 Instead a particular thermodynamic frame,
given by our definition of the hydrodynamic fields (2.19a) and (2.20), is well-defined and
we shall use this frame choice throughout the rest of the paper.

Finally, our constitutive relations (2.54) reduce in the FSCC limit to

T 0
0 = −ε , (2.62a)

T 0
i = ρmvi + βPEi = Pi , (2.62b)

T i0 = −
(
ε+ P − ~P · ~E

)
vi , (2.62c)

T ij = Pδij + ρmv
ivj − κEEiEj , (2.62d)

J0 = n− ∂jPj , (2.62e)
J i = nvi + ∂tP

i . (2.62f)

Notice that independent constant electric and velocity fields are solutions of the hy-
drodynamic equations of motion (2.43) and (2.44). As a result, enforcing a Drude-like
constraint such as (1.1) is not necessary. However, the electric field cannot take arbitrary
values — as one would expect in experiments — but must be carefully balanced by a
non-trivial profile for the chemical potential for the system to remain in hydrostatic equi-
librium. Consequently, an electric field driven flow and current seem impossible to generate
in hydrostatic equilibrium. To circumvent this issue, one could attempt to impose (1.1) on
the boost agnostic hydrodynamics directly, without including additional relaxation terms.
This is an unphysical route to follow for the following reasons.

First, within the hydrodynamic theory we have already written down, the Drude con-
straint (1.1) can only arise as a particular solution of the equations of motion. Thus,
enforcing (1.1) does not extend the theory beyond hydrostatic equilibrium, but rather con-
stricts it to a narrow subset of phase space. Further, compatibility between the Drude and
hydrostatic constraints yields additional constraints on ΩE and Ωµ. For example, we can
use (2.44) to rewrite (1.1) as

vi = Ω̃E(T, µ,~v2, ~E2, ~v · ~E)Ei , Ω̃E = ΩE + Ωµ . (2.63)
6The absence of Landau frame already happens in relativistic hydrodynamics, see [1].
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Substituting this expression into (2.43) one finds constraints that lead to the thermody-
namic derivatives of Ω̃E not being free variables (and thus neither is Ω̃E free). If we assume
this applies to every system, then we have derived an extremely strong constraint on the
kinds of transport one can encounter in nature. For example, using one of the stationarity
constraints (2.43) with (2.63) leads to:

0 = ∂(ivj) = ∂Ω̃E
∂µ

E(iEj) + ∂Ω̃E
∂~E2

E(i∂j)~E
2 + ∂Ω̃E

∂~v2 E(i∂j)~v
2

+ ∂Ω̃E
∂(~E · ~v)

E(i∂j)(~E · ~v) + Ω̃E∂(iEj) . (2.64)

Comparing tensor structures we see the first term implies that Ω̃E is independent of the
chemical potential. In addition, it is not hard to see that at lowest order in derivatives Ω̃E
plays the role of the DC conductivity σDC

~J = nΩ̃E~E , σDC = nΩ̃E . (2.65)

Unfortunately we cannot think of this term as some kind of incoherent conductivity [39] as
the latter is generically non-zero at vanishing chemical potential (where the charge density
is also expected to vanish). Therefore, the DC conductivity depends on the chemical
potential entirely through the number density n. While we have not been able to rule out
such a situation from first principles, we do not find this scenario credible and henceforth
we shall assume that Ω̃E is not constrained, but ultimately it will be the hydrostatic
constraint (2.44) that needs to be modified by the presence of relaxation terms. In this
case Ωµ 6= 0 generically, but Ωµ = 0 can be reached as a special limit by tuning the
relaxation terms appropriately.

We proceed in the next subsection by introducing relaxation terms and deriving how
the hydrostatic constraint (2.44) must be modified.

2.4 Relaxation at zeroth order

In the hydrodynamic formulation we have developed, ~v and ~E are independent variables.
In the hydrostatic limit they can assume any functional form, consistent with (2.43), in-
dependently from one another and our hydrodynamic equations will still be satisfied. In
particular, we do not have to obey the constraint (1.1). To move away from the hydrostatic
result, we follow our intuition from the Drude model and relax the equations of motion
with decay terms.

We expect that to be consistent with the principle of effective field theory, the relax-
ation terms should be written in terms of the effective operators in the theory. At order
zero in derivatives these operators can only be the hydrostatic ones such as the energy
density, number density, the momentum etc. These form one class of relaxations — those
that are non-zero at stationarity — and as we shall see such terms can actually lead to
modifications of the hydrostatic constraints (e.g. (2.43)). At order one, an additional class
of relaxation terms consisting of non-hydrostatic operators is possible.

With these points in mind, we add relaxation in the natural way familiar from La-
grangian mechanics; we derive the conservative parts of the equations of motions from
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W(0), i.e. eq.s (2.49b), through a variational principle and subsequently add in the non-
conservative forces by hand and check for consistency. We carry out this analysis only in
the FSCC limit, where our relaxed conservation equations take the following form

0 = ∂tε+ ∂iJ
i
ε −EiJ i + Γ̂ε , (2.66a)

0 = ∂tPi + ∂jT
j
i − nJ

i + Γ̂i~P , (2.66b)
0 = ∂tn+ ∂iJ

i , (2.66c)

where the energy current is given by J iε = T it . The relaxation terms displayed in (2.66a)–
(2.66c) are the most generic ones we can add to the constitutive relations at lowest order
in derivatives. In particular, momentum relaxation can only include (Pi,Pi) because we
are assuming that ∂iµ (which, as a reminder, can be order zero in derivatives) can still be
expressed in terms of the electric field.7

Our goal now is to determine the relaxation terms such that the equations of motion
are identically satisfied. The conservation equations split into 0th and 1st order pieces,
which need to be satisfied independently for our derivative expansion to be consistent.
Focusing for the moment only on the zeroth order terms, we identify

Γ̂i~P = Γ~PP
i + Γ~PP

i +O(∂) , Γ̂ε = Γε +O(∂) . (2.67)

One may be tempted to add terms of the form(
Γ~P

) j
i
Pj ,

(
Γ~P
) j
i
Pj , (2.68)

where the relaxation terms are matrices to Γ̂i~P . However, requiring the relaxation rates be
expressible in terms of (Pi,Pi) — as is appropriate for an effective theory — we find that(

Γ~P

) j
i
Pj =

(
α1PiP

j + α2PiP
j + α3P

jPi + α4PiP
j + α5δ

j
i

)
Pj

=
(
α1 ~P

2 + α2~P · ~P + α5
)
Pi +

(
α3 ~P · ~P+ α4~P

2
)
Pi , (2.69)

i.e. we ca express the relaxation rates as a linear combination of P i and Pi and, thus, our
choice of relaxation terms in (2.67) is the most general one.

Subsequently, the resultant (non-)conservation equations of motion take the form

nvi (Ei − ∂iµ) = Γε +O(∂) , (2.70a)
n
(
E
i − ∂iµ

)
= Γ~PP

i + Γ~PP
i +O(∂) . (2.70b)

We observe that hydrostatic constraints (2.43) no longer identically satisfy (2.70) and we
must re-examine the equations of motion. As a crosscheck, we note that in the absence of
relaxation terms, we still need to impose the same constraint (2.70) as before, namely:

E
i − ∂iµ = 0 . (2.71)

7To be justified shortly.
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Let us now analyse various generic situations in the presence of relaxation without
imposing (1.1). If we maintain (2.71) while retaining relaxation terms we find we must
require

Γ~PP
i + Γ~PP

i = 0 , (2.72a)
Γε = 0 . (2.72b)

Re-expressing (2.72) in terms of ~v and ~E we find

vi = −
(
κEΓ~P + βPΓ~P

βPΓ~P + ρmΓ~P

)
E
i . (2.73)

We see that eq. (2.73) provides us with the Drude constraint generalized in the hydrody-
namic setting. Comparing (2.73) with (1.1) we see that Ω̃E, defined in (2.63), is given by

Ω̃E = −
(
κEΓ~P + βPΓ~P

βPΓ~P + Γ~Pρm

)
. (2.74)

Subsequently one finds the constraints on the DC conductivity discussed near the end of
subsection 2.3.

The conditions (2.72) are a limit of our generic results where the energy and momentum
relaxations are unconstrained. Returning to solving the full expressions presented in (2.70),
we now allow ourselves to violate (2.71). Firstly, we note that equation (2.70a) is not
independent of (2.70b) on-shell as can be seen by contracting (2.70b) with the spatial fluid
velocity. In particular, we can identify Γε in terms of Γ~P and Γ~P,

Γε = ~v ·
(
Γ~P

~P + Γ~P~P
)

=
(
ρmΓ~P + βPΓ~P

)
~v2 +

(
βPΓ~P + κEΓ~P

)
~v · ~E . (2.75)

At the moment this relation appears as a condition on hydrostatic flows. When we discuss
entropy production, we will show that it must also hold for non-hydrostatic flows if the
ideal fluid is to not generate entropy. This relation between the Γs can also be justified by
our Drude calculation but moreover, it is simply imposing that whatever hydrodynamic
theories we are looking at, they will be consistent with a stationary configuration defined
by the Drude constraint eq. (1.1).

Assuming ρmΓ~P + βPΓ~P 6= 0 we can rearrange (2.70b) to find

~v =
(
n− κEΓ~P − βPΓ~P

βPΓ~P + ρmΓ~P

)
~E− n

βPΓ~P + ρmΓ~P

~∂µ+O(∂) , (2.76)

giving us the most general hydrodynamic Drude constraint with

ΩE =
(
n− κEΓ~P − βPΓ~P

βPΓ~P + ρmΓ~P

)
, (2.77a)

Ωµ = n

βPΓ~P + ρmΓ~P

, (2.77b)
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Note that Ωµ 6= 0, unless n = 0 or βPΓ~P + ρmΓ~P →∞. This shows, that charge transport
away from charge neutrality requires Ωµ 6= 0, thus justifying our rejection of eq. (2.73)
and maintaining the hydrostatic constraint Ei = ∂iµ. Moreover, if we do impose (2.71),
then we recover (2.73), showing our result captures all cases. The Drude constraint can
be re-arranged as a constraint for the relaxation terms, which might be of more use to the
experimentalist, as Γ~P

Γ~P

 = n

 βPΩE + κE ρmΩE + βP

βPΩµ ρmΩµ

−1 1
1

 . (2.78)

This shows that our relaxation terms are completely fixed by the thermodynamics and, in
particular, that both of them vanish when n→ 0.

3 Relaxed hydrodynamic equations to first order in derivatives

We now turn to relaxation for boost agnostic fluids at order one in derivatives. In hy-
drodynamics without relaxation the zeroth order constitutive relations lead to first order
equations of motion that are satisfied up to second order in derivatives. When we have
relaxation terms, a consistent set of first order equations of motion must allow for first
order pieces in the relaxation terms. Moreover, Pi and Pi entering in (2.70b) receive first
order corrections; thus it is imperative to determine the forms of these corrections.

As in the previous section, we first derive the constitutive relations without momentum
relaxation or imposing (1.1) via the generating functional W(1). In principle, W(1) is built
out of the following independent scalar quantities

s(1) =
{
νµ∂µ(T, µ,~v2, ~E2, ~v · ~E), Eνhνµ∂µ(T, µ,~v2, ~E2, ~v · ~E),

uµuν∇µEν , νµuν∇µEν , hµζEζuν∇µEν , hµν∇µEν ,

τρΓρ[µν]ν
µhνσEσ , hρσu

σΓρ[µν]ν
µhνσEσ

}
.

We have written everything in terms of covariant derivatives, in order to find the most
general result, but we immediately take the flat space limit after varying. With regards
to the variations, the torsion tensors are a little inconvenient to work with. As such we
replace them using the following equations

Γρ[µν]τρ = ∂[µτν] , (3.1)
Γρ[µν]hρσu

σ = hσ[ν∇µ]u
σ − ∂[µ(hν]σu

σ) . (3.2)

These express particular contractions of the torsion tensor in terms of other quantities.8

Subsequently we use the following basis of scalars

s̃(1) =
{
νµ∂µ(scalars), Eνhνµ∂µ(scalars), uµuν∇µEν , νµuν∇µEν , hµζEζuν∇µEν ,

∇µEµ, ∂µτνν[µhν]σ
Eσ , ∂µ(hνσuσ)ν[µhν]ρ

Eρ

}
. (3.3)

8In writing the list (3.1), it was already necessary to show that Γρ[µν]hρσu
σ could be expressed in terms

of other scalars already present in the list.
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With the order one scalars in hand, the hydrostatic generating functional W(1) is given
by

W(1) =
∫
dd+1x e

∑
i

Fi(T, µ, hµνEµEν , hµνuµuν ,Eµuµ)s̃(i)
(1) . (3.4)

As before, varying the generating functional with respect to the clock-form, spatial metric,
gauge field and field strength gives the constitutive relations (2.46). As we will only care
about expressions in FSCC we can simplify our analysis by considering the FSCC limit
at the level of W(1). In particular, because torsion vanishes in this limit the stationarity
constraints that we used to eliminate torsion terms in writing (3.1) now become relations
between other variables. Namely,

s̃1 = s̃2 = s̃5 = s̃13 = s̃14 = 0 , (3.5a)
s̃3 = 2s̃8 = 2s̃11 = vi∂i~E

2 = s̄1 , (3.5b)
s̃4 = s̃10 = vi∂i(~E · ~v) = s̄2 , (3.5c)
s̃6 = 2s̃9 = E

i∂i~v
2 = s̄3 , (3.5d)

s̃7 = E
i∂i~E

2 = s̄4 , (3.5e)
s̃12 = ∂iE

i = s̄5 . (3.5f)

In addition, it is helpful to construct a basis of non-composite independent vectors in the
FSCC limit. We use as a basis the following collection of vectors

v̄1 = ∂i~v
2 , (3.6a)

v̄2 = ∂i~E
2 , (3.6b)

v̄3 = ∂i
(
~v · ~E

)
, (3.6c)

v̄4 = vj∂iEj . (3.6d)

Using (2.46) and varying W(1) we obtain the constitutive relations at order one. For
our purposes we shall only need to know the expressions for the spatial momentum, the
polarisation, the number density and the energy density. Henceforth, Pi, Pi and ε refer to
objects with both order zero and order one terms. All other quantities defined previously
take only their order zero form e.g. n = ∂P/∂µ. Given that the expressions are long and not
particularly illuminating we only report these expansions and relegate them to appendix B.

We remark that in deriving the first order constitutive relations, we must deal with the
issue of derivatives of the chemical potential. In [1], for an order zero in derivatives electric
field, the derivative of the chemical potential must also be order zero. Consequently, when
taking the derivative of Fi it is possible to produce an order zero (e.g. ∂µFi∂iµ) term, when
we would generically expect only order one terms. Two potential interpretations for this
issue were given in [1]. We could accept that at each order in derivatives of the effective
action there will be terms that contribute to the constitutive relations at one lower order.
Consequently to know the constitutive relations at order n we must compute the generating
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functional to order n+1. Alternatively, we can additionally assume that ∂Fi
∂µ ∼ O(∂). In [1]

this is interpreted as requiring that the effect of free charges is less important than the effect
of bound charges, but arguably requires us to assume the existence of another scale in our
problem.

We however can explore a new option; it is consistent for us to treat ∂µ ∼ O(∂). In [1],
∂iµ had to be considered as zeroth order to achieve a consistent hydrostatic equilibrium
by balancing the effects of a non-zero electric fields, see (2.29). However, in our work we
include relaxation terms, which can also balance the effect of the electric field, namely on
hydrostatic solutions we found

n
(
E
i − ∂iµ

)
− Γ~PP

i − Γ~PP
i = 0 (3.7)

Therefore we can take derivatives of the chemical potential to be order one in the derivative
expansion, independently of the order of the electric field. Notice that this possibility, to
consider ∂µ order one in derivatives, does not spoil any of the result of the previous section:
equation (3.7) is exact and takes the same form independently on the derivative counting
considered for ∂µ. In this work we shall simply keep derivatives of the chemical potential
in our expressions, trusting the reader to replace them as they please.

3.1 The zoology of relaxation at first order

To understand relaxation at first order, let us consider the momentum (non-)conservation
equation written schematically as

0 = ∂tPi + ∂jT
j
i −

(
n− ∂jPj

)
Ei + Γ̂i~P +O(∂2) , (3.8)

Again, following the principles of effective field theory we expect that the relaxation terms
must be written in terms of the effective operators up to and including order one, i.e.

Γ̂i~P =

Γ~P +
5∑
j=1

Γ(s̄)
~P ,j
s̄j

P i +

Γ~P +
5∑
j=1

Γ(s̄)
~P,j
s̄j

Pi +
4∑
j=1

Γ(v̄)
j (v̄j)i +O(∂2) . (3.9)

To proceed, we note that satisfying eq. (3.8) in the presence of relaxation terms, begets
us to make a crucial choice; which of the stationarity constraints in eq. (2.43) should we
violate?

At order zero, we could only break the constraint (2.44), Ei = ∂iµ, but at order one
we have the potential to relax other hydrostaticity constraints.9 Which is the largest set of
broken constraints leading to consistent hydrodynamic equations is an open question. Here
we make a much less severe modification, i.e. we continue to modify only (2.44). Then (3.8)
evaluates to

n (Ei − ∂iµ) =

Γ~P +
5∑
j=1

Γ(s̄)
~P ,j
s̄j

Pi +

Γ~P +
5∑
j=1

Γ(s̄)
~P,j
s̄j

Pi
+

4∑
j=1

Γ(v̄)
j (v̄j)i +O(∂2) . (3.10)

9One can confirm that all hydrostaticity constraints in (2.43) are naively order one in derivatives.
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In principle, we can think of eq. (3.10) as the definition of the broken constraint (2.44)
at order one in derivatives. In fact, by choosing to relax the zeroth order stationarity
constraint (2.44) as10

n (Ei − ∂iµ) = Γ~PPi + Γ~PPi , (3.11)

we had implicitly accepted that there are generically order one (and higher) corrections to
the stationarity constraint. This follows from the fact that the expressions for Pi and Pi
in terms of our operator basis receive corrections order by order (see appendix B). If we
wanted to avoid first order corrections in (2.44) we could choose

Γ~P

∣∣∣
O(∂0)

= Γ~vvi + Γ~EE
i . (3.12)

Doing so means we lose the interpretation of Γ~P and Γ~P as inverse relaxation times beyond
lowest order, which is something we deem unphysical. It is interesting to note, however,
that moving between these choices is a matter of redefining the relaxation term Γ̂i~P by
choosing a basis for its expansion.

Moving on to the relaxed energy-conservation equation, we have at order one

0 = ∂tε+ ∂iJ
i
ε −EiJ i + Γ̂ε , (3.13)

which leads to

nvi (Ei − ∂iµ) = Γ̂ε +O(∂2) . (3.14)

In other words

Γ̂ε = viΓ̂i~P . (3.15)

Correspondingly, this is why we chose to write our energy relaxation term without the
conventional factor of the energy density. If we want to restore this energy factor, we can
interpret the leading term as energy relaxation rate and write

Γ̂ε = Γεε+
5∑
j=1

Γ(s̄)
ε,j s̄j + Γ(s̄)

ε,6v
i∂iµ+ Γ(s̄)

ε,7E
i∂iµ+O(∂2) . (3.16)

10Such a decomposition is conventional in the literature, allowing one to interpret the coefficients Γ~P and
Γ~P as inverse relaxation times.

– 21 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
8

Employing (3.15) and (3.10) we can then identify the Γ(s̄)
ε,j precisely,

Γ(s̄)
ε,1 = Γ~P

(
γP,2~v

2 + γP,1~v · ~E
)

+ Γ~P
(
γP,1~v

2 + γP,2~v · ~E
)

+Γ~PγP,17 − Γεγε,1 , (3.17a)

Γ(s̄)
ε,2 = Γ~P

(
γP,4~v

2 + γP,3~v · ~E
)

+ Γ~P
(
−2γP,1~v · ~E

)
+Γ~PγP,16 − Γ~PγP,7 − Γεγε,2 , (3.17b)

Γ(s̄)
ε,3 = Γ~P

(
γP,6~v

2 + γP,5~v · ~E
)

+ Γ~P
(
γP,4~v

2 + γP,5~v · ~E
)

+1
2Γ~P (γP,15 + γP,16)− Γεγε,3 , (3.17c)

Γ(s̄)
ε,4 = Γ~P

(
γP,8~v

2 + γP,7~v · ~E
)

+ Γ~P
(
γP,2~v

2
)

−Γεγε,4 , (3.17d)

Γ(s̄)
ε,5 = Γ~P

(
γP,10~v

2 + γP,9~v · ~E
)

+ Γ~P
(
γP,7~v

2 + γP,8~v · ~E
)

−Γεγε,5 , (3.17e)

Γ(s̄)
ε,6 = −2Γ~P

(
γP,12~v

2 + γP,11~v · ~E
)
− Γ~P

(
γP,11~v

2 + 2∂µF3~v · ~E
)

−Γ~P∂µF12 − Γεγε,6 , (3.17f)

Γ(s̄)
ε,7 = −2Γ~P

(
γP,14~v

2 + γP,13~v · ~E
)
− Γ~P

(
γP,12~v

2 + 2∂µF7~v · ~E
)

−Γ~P∂~E2F12 − Γεγε,7 , (3.17g)

where

Γε =

(
Γ~Pρm + Γ~PβP

)
~v2 +

(
Γ~PβP + Γ~PκE

)
~v · ~E

sT + µn+ ρm~v2 + 2βP~v · ~E+ κE~E2 − P
, (3.18)

where the coefficients appearing in (3.17) are described in appendix B.
What remains to be done to complete our discussion is to examine the entropy current

of our construction. Before doing so, however, we make a small observation that will be
especially relevant for future studies of our systems at higher derivative orders. Consider
charge relaxation

∂tn+ ∂iJ
i = 0→ ∂tn+ ∂iJ

i = Γnn , (3.19)

where Γn is the relaxation term. To both sides of this equation we can add the divergence
of a vector field

∂tn+ ∂i
(
J i + ∆i

~J

)
= Γnn+ ∂i∆i

~J
, (3.20)

where ∆i
J is an example of what we name the current relaxation terms. We see that if

the Γn satisfy certain thermodynamic integrability constraints, we can use these current
relaxation terms to cancel pieces of Γn. This comes at the expense of modifying our
constitutive relations. In these cases the relaxation terms are in some sense fake, as they
can be redefined away and the equation of motion reverts to a charge conservation equation.
We do not discuss current relaxation terms in our analysis, since our Γs will be assumed
not to satisfy the requisite thermodynamic integrability constraints.
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3.2 Entropy current conservation

As our conservation equations and stationarity conditions do not strictly follow from the
generating functional, we should check whether the entropy current is positive definite at
ideal order. Subtracting from the energy conservation equation (3.13) the inner product of
the momentum conservation equation (3.8) with vi and the charge conservation equation
multiplied by µ, we arrive at(

∂t + vi∂i
) (
ε− ~P · ~E

)
− vi

(
∂t + vj∂j

)
Pi +

(
ε+ P − ~P · ~E− vjPj

)
∂iv

i

+viPj∂jEi +Pj∂tEj

= Γ̂ε − viΓ̂i~P +O(∂2) . (3.21)

Using (
∂t + vi∂i

) (
ε− ~P · ~E

)
= T

(
∂t + vi∂i

)
s+ µ

(
∂t + vi∂i

)
n

−Pj
(
∂t + vi∂i

)
Ej + vj

(
∂t + vi∂i

)
P j , (3.22)

which follows from (2.60), this expression becomes(
∂t + vi∂i

)
s+ s∂iv

i = Γ̂ε − viΓ̂i~P +O(∂2) , (3.23)

where we have imposed the Bianchi identity (2.36) to simplify. In the absence of relaxation,
we know that the left hand side of (3.23) is identically satisfied and entropy is conserved.
We notice that this is still the case when relaxation is included, if we use our modified
hydrostatic constraint (2.70) leading to (3.15). If we demand that our system only produces
entropy at higher than first order in derivatives, then entropy conservation can be extended
to any solution of the hydrodynamic equations. This condition is not strictly necessary and
ideal fluids can produce entropy in the presence of relaxations, as shown in [10]. However
the relaxations in [10] are not hydrostatic and must disappear in equilibrium, while our
relaxations are hydrostatic compatible, which suggest that they should not contribute to
the entropy production.

It may initially seem surprising that in the presence of relaxation terms the entropy can
be conserved. We remind the reader however that the second law of thermodynamics only
requires entropy to increase in an isolated system. In an open system, it may remain con-
stant or even decrease. We can see this intuitively by examining the Gibbs-Duhem relation

s = 1
T

(
ε− nµ− ~v · ~P

)
+ P − ~E · ~P

T
. (3.24)

Notice that if ~P decreases, such as happens for the relaxation terms in (3.8), we can keep
the entropy constant if we simultaneously reduce the energy density (hence the necessity of
an energy relaxation term). Moreover, a careful examination of how we have manipulated
the equations of motion would indicate that when the derivative of the chemical poten-
tial can be treated as order one in derivatives, our entire formalism reduces to setting the
source terms in energy, momentum and charge conservation equations to zero. Thus it is
unsurprising that entropy is conserved.
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3.3 Linearised stability

As a final check on whether our quasihydrodynamic theory is sensible, we now consider the
linearised stability of our system. To do this, we must pick a hydrostatic condition. We
shall make the simplest such choice, namely that

n
(
E
i − ∂iµ

)
= Γ~PP

i + Γ~PP
i . (3.25)

This is a minimal constraint which assumes that the Drude constraint (1.1) is exact, i.e.
does not receive corrections at higher orders in derivatives.

We choose the background around which we check linear stability to be (2 + 1)-
dimensional and consist of a non-zero constant chemical potential µ and electric field in
the x-direction ~E = (Ex, 0). Given our constraint (3.25), this means that the fluid also has
a non-zero velocity in the x-direction given by

vx =
(
n− κEΓ~P − βPΓ~P

βPΓ~P + ρmΓ~P

)
Ex . (3.26)

We can perturb about this background by fluctuating the temperature, chemical potential
and spatial velocity. At zero wave-vector we find two zero-modes and two decaying modes.
The expression for one of the decaying modes is

ω = −iΓeff. , Γeff. = 1
ρm

(
βPΓ~P + ρmΓ~P

)
. (3.27)

The expression for the second decaying mode is significantly more complex, and in general
its stability will require us to know more precisely the equation of state for the system.
Nevertheless for small in amplitude electric fields the second mode has the form

ω = −iΓeff +O(E2
x) . (3.28)

In this case our system is linearly stable on the condition Γeff. ≥ 0⇔ βPΓ~P+ρmΓ~P ≥ 0. We
have also checked that the zero modes become propagating modes at non-zero wavevector.

An interesting consequence of the stability condition is that it allows one of the relax-
ation rates to be negative. This allows us to tune Γ~P carefully, such that the Drude con-
straint (1.1) on the velocity depends solely on the total electric field ~E+~P− ~∂µ. This incor-
porates the backreaction of the non-zero polarisation into the problem. In particular, define

Γ~P = −
(
n+

βPΓ~P

κE

)
. (3.29)

In this case, the spatial velocity depends on the total electric field as

~v = n

Γ~P

(
ρm −

β2
P

κE

) (~E+ ~P− ~∂µ
)

+O(∂) , (3.30)

on the condition that
Γ~P ≥

nβP

ρm −
β2
P

κE

, (3.31)
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which follows from the stability condition βPΓ~P + ρmΓ~P ≥ 0. We see that this constraint
reduces to the usual one Γ~P ≥ 0 when the compressibility of polarisation βP is zero.

On physical grounds one might expect (3.29) and subsequently (3.30) to hold for all
systems, as it simply states that the flow velocity depends on the actual electric field
experienced by the fluid particle. Yet we are not able to prove this result and do not
assume it henceforth.

3.4 DC conductivities

Finally, we note that the hydrodynamic systems we have described thus far exhibit both
charge and heat transport on hydrostatic solutions. In particular, evaluating the charge
current on the Drude constraint (1.1) we find

~J = n2τ

ρm
~E+O(∂) , (3.32)

where

τ = Γ−1
~P

1− κEΓ~P
n − βPΓ~P

n

1 + βPΓ~P
ρmΓ~P

 , (3.33)

is the effective decay rate. This shows that our stationary states exhibit a non-trivial charge
flow as well as a DC conductivity resembling the Drude result. In particular, because Γ~P ,~P
depend on the electric field, we can define two kinds of DC conductivities: the non-linear
DC conductivity, σDC, is defined via

σDC = ~J/ ~E = n2τ

ρm
, (3.34)

while we can also define a DC conductivity σ′DC = ∂ ~J/∂ ~E. In this case we find

σ′DC − σDC = ~E · ∂
∂~E

(
n2τ

ρm

)
(3.35)

In the low electric field limit, the right hand side of (3.35) depends linearly on ~v · ~E and
therefore vanishes in the limit of zero electric field, as expected. Importantly, we must
remember that our results, (3.32) and (3.34), depend on the ground state velocity and the
applied electric field. Moreover, the heat current of our system, which can be read off
from (3.23), is given by

~Q = sT~v = sTnτ

ρm
~E , (3.36)

implying our system also exhibits a non-trivial DC thermoelectric coefficient

αDC = sTnτ

ρm
. (3.37)

Before turning to the discussion, let us comment on the physical relevance of our
results to potential experiments. In particular, we believe our framework should be used to
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describe DC transport measurements in the hydrodynamic regime of electronic materials in
the presence of a constant electric field, which have reached a steady state. To understand
this better, let us first remind ourselves of how the Drude form for the conductivity is
derived from a naive kinetic theory calculation. Suppose one has a collection of charged,
weakly interacting, slowly moving particles in the presence of a constant external electric
field ~E that has achieved a steady state flow. Assuming that we can ignore inter-particle
interactions, Newton’s law tells us that the acceleration of any single charged particle is

m
d

dt
〈~v〉 = q~E− m

τ
〈~v〉 , (3.38)

where 〈~v〉 is the net average velocity, m the particle mass and q the particle charge. We
have added an effective collision time τ to the system which may be treated as a phe-
nomenological parameter describing interactions of the charges with impurities, lattices et
cetera. It follows that if the system achieves a steady state flow, which can only happen
when τ 6=∞, then d〈~v〉/dt = 0 and therefore 〈~v〉 = qτ/m~E. It cannot be stressed enough
that this drift velocity is a fundamental property of the material ; not the initial conditions
nor the geometry of the sample - just as for our fluid discussed above. Further, assuming
that the volume density of the cloud of particles is n, such that the spatial charge current
is given by ~J = nq〈~v〉, one quickly finds that

~J = nq2τ

m
~E such that σDC = nq2τ

m
. (3.39)

Generally when an electric current is passed through an electrical device it will heat
up. If the system eventually achieves a steady state this heat must be lost by the device at
the same rate that it is produced; if it does not dissipate heat the device melts. In practice
this dissipation is achieved by keeping the amplitude of the electric field small, so that the
produced heat is small, and we use an excellent thermal sink. An excellent thermal sink
implies that we can assume the temperature of the device is the same as the temperature of
the atmosphere (one finds drift velocity in data tables is specified at a given temperature).
Assuming weak correlations, one can simulate such effects in a simple Drude-like model.
In particular the time dependence of the average kinetic energy of the particles is given by

m

2
d

dt
〈~v〉2 = e〈~v〉 · ~E− m

τ
〈~v〉2 . (3.40)

Imposing the steady flow constraint of (3.38) one finds that the right hand side of this
equation is also zero. The second term in the above expression is an example energy
relaxation term similar to our Γε in the hydrodynamic picture.

4 Discussion

In this paper we have demonstrated that it is possible to consistently modify the hydro-
staticity conditions using relaxation terms up to and including order one in derivatives.
We have shown that the relaxation terms are not arbitrary, but must satisfy particular
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constraints; more specifically, our relaxation terms are completely fixed by the thermody-
namics (see (2.75) and (2.78)) and they vanish when the charge density n goes to zero. This
leads to a ground state of our fluid with a constant flow of charge and heat. These flows re-
sult in our fluid also exhibiting both DC electric charge and thermo-electric conductivities
that depend non-linearly on the electric field, which we calculated explicitly.

In our work we have treated relaxation terms consistently by splitting them into two
kinds - relaxation terms that can be expanded in the basis of stationary tensor structures
(considered in this paper) and relaxation terms that can be expanded in terms of tensor
structures that vanish at stationarity (for future work). This gives a precise meaning to the
idea of relaxation term being of a particular order in derivatives; which can be ascertained
by examining the order of the relevant tensor structure.

As regards the future perspectives, a fundamental question is to determine how our
analysis is modified when employing the order one constitutive relations in their respective
equations of motion. A consistent analysis will require us to obtain second order relaxation
terms. Specifically, it would be interesting to determine how the DC conductivities are mod-
ified by these additional terms as this is also the order where tensor structures that vanish
at stationarity, including the type associated with the incoherent conductivity, can be in-
troduced. A straightforward follow up of our work would be to include in the analysis such
dissipative terms, and analyse their implications at the level of thermo-electric transport.

Finally, it would be important to study holographic models which realise the hydrody-
namic picture described in this paper. With a holographic realisation to hand, it would be
possible to analyze further the validity of our hydrodynamic description and to understand
the transition from the hydrodynamic to the non-hydrodynamic regime in the new class of
fluids which we have described. Holographic models with a background electric field have
been considered e.g. in [40]. It would be interesting to generalise this analysis in order to
include relaxation terms of the kind described in this work.
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A Conservation equations and hydrostaticity

In this appendix, we show that the equations of motion of the fluid are satisfied identically
when we use the stationarity constraints (2.43) and (2.44) in the FSCC limit. First, recall
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that requiring diffeomorphism and gauge invariance of the generating functional W , yields
the following (non-)conservation equations

e−1∂µ
(
eTµρ

)
+ Tµ∂ρτµ −

1
2T

µν∂ρhµν = FρµJ
µ , (A.1a)

e−1∂µ (eJµ) = 0 , (A.1b)

where we have employed (2.46) and (2.47). In addition we have the following conservation
equation for the polarisation

e−1∂µ∂ν
(
2eν[µ

P
ν]
)

= 0 . (A.1c)

Turning to the FSCC limit the electric charge conservation equation becomes

∂tn+ ∂iJ
i = 0 . (A.2)

Employing the constitutive relations of (2.62) we find(
∂tn+ vi∂in

)
+ n∂iv

i = 0 . (A.3)

Setting the first term (in brackets) to zero follows from Lu(n) = 0. The remaining term
vanishes if the expansion of the fluid, ∂ivi, is zero. This is indeed one of the conditions
in (2.43).

For SEM tensor conservation, (2.49a), the time component in flat space takes the form

∂tε+ ∂iJ
i
ε −EiJ i = 0 , (A.4)

where J iε = T it is the energy current. Substituting in the constitutive relations (2.62) we
obtain

0 =
(
∂t + vi∂i

) (
ε− ~P · ~E

)
+ κE

2
(
∂t + vi∂i

)
E

2 + βP
(
∂t + vi∂i

) (
~E · ~v

)
+
(
ε+ P − ~P · ~E

)
∂iv

i + ρmv
ivj∂ivj − βPEi∂tvi

−vi (n (Ei − ∂iµ)− s∂iT ) , (A.5)

In the hydrostatic limit the first three terms vanish on account of requiring conservation
of scalar quantities; then the next four terms vanish on account of conditions in (2.43).

Finally, we come to momentum conservation given by the spatial part of (2.49a). In
flat space we find

∂tPi + ∂jT
j
i −

(
n− ∂jPj

)
Ei = 0 . (A.6)

Once again, expanding terms by substituting in the constitutive relations we find

0 = vi
(
∂t + vj∂j

)
ρm +Ei

(
∂t + vj∂j

)
βP + ρmvi∂jv

j

−n (Ei − ∂iµ) + s∂iT + ρm
(
∂tvi + vj (∂ivj + ∂jvi)

)
+
(
κEE

j + βPv
j
)

(∂iEj − ∂jEi)

+βP
(
∂tEi + vj∂jEi +Ej∂ivj

)
. (A.7)

Term by term we again find that the equation of motion is identically satisfied by the
hydrostatic constraints (2.43) completing our demonstration.
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B Transport coefficients in FSCC

B.1 Energy density

The energy density ε up to and including order one in derivatives has the form

ε = −P + sT + µn+ ρm~v
2 + 2βP~v · ~E+ κE~E

2

+γε,1vi∂i~E2 + γε,2v
i∂i(~E · ~v) + γε,3E

j∂j~v
2 + γε,4E

i∂i~E
2 + γε,5∂i~E

i

−γε,6vi∂iµ− γε,7Ei∂iµ , (B.1)

where

γε,1 = µ
∂F3
∂µ

+ T

(
∂F3
∂T
− ∂F1

∂~E2

)
+ 2

(
∂F3
∂~v2 −

∂F2

∂~E2

)
~v2 +

+
(

∂F3

∂(~E · ~v)
− ∂F4

∂~E2

)
(~E · ~v)− (~E · ~v)

2
∂F14

∂~E2
+
(

∂F3

∂(~E · ~v)
− ∂F4

∂~E2

)
(~E · ~v) +

−∂F10

∂~E2
(~E · ~v) + µ

2
∂F8
∂µ

+ T

2

(
∂F8
∂T
− ∂F5

∂(~E · ~v)

)
+
(
∂F8
∂~v2 −

∂F6

∂(~E · ~v)

)
~v2 +

−
(

∂F7

∂(~E · ~v)
− ∂F8

∂~E2

)
~E2 − (~E · ~v)

2
∂F11

∂(~E · ~v)
+ 1

4
∂F13

∂(~E · ~v)
+

+F11
2 + µ

2
∂F11
∂µ

+ T

2
∂F11
∂T

+ ∂F11
∂~v2 ~v

2 + (~E · ~v)
2

∂F11

∂(~E · ~v)
+

+(~E · ~v)
2

∂F11

∂(~E · ~v)
+ ∂F11

∂~E2
~E2 − 1

2
∂F12

∂(~E · ~v)
(B.2)

γε,2 = µ
∂F4
∂µ

+ T

(
∂F4
∂T
− ∂F1

∂(~E · ~v)

)
+ 2

(
∂F4
∂~v2 −

∂F2

∂(~E · ~v)

)
~v2 − (~E · ~v)

2
∂F14

∂(~E · ~v)
+

−2
(

∂F3

∂(~E · ~v)
− ∂F4

∂~E2

)
~E2 − ∂F10

∂(~E · ~v)
(~E · ~v) + F10 + µ

∂F10
∂µ

+ T
∂F10
∂T

+2∂F10
∂~v2 ~v

2 + ∂F10

∂(~E · ~v)
(~E · ~v) + ∂F10

∂(~E · ~v)
(~E · ~v) + 2∂F10

∂~E2
~E2 − 1

2F14 (B.3)

γε,3 = µ
∂F6
∂µ

+ T

(
∂F6
∂T
− ∂F5
∂~v2

)
+
(

∂F6

∂(~E · ~v)
− ∂F8
∂~v2

)
(~E · ~v) +

+
(

∂F6

∂(~E · ~v)
− ∂F8
∂~v2

)
(~E · ~v) + 2

(
∂F6

∂~E2
− ∂F7
∂~v2

)
~E2 − ∂F11

∂~v2 (~E · ~v) + 1
2
∂F13
∂~v2 +

+F9 + µ

2
∂F9
∂µ

+ T

2
∂F9
∂T

+ ∂F9
∂~v2 ~v

2 + ∂F9

∂(~E · ~v)
(~E · ~v)

2 − F9
2 +

+(~E · ~v)
2

∂F9

∂(~E · ~v)
+ ∂F9

∂~E2
~E2 + 1

2F9 −
∂F12
∂~v2 (B.4)

γε,4 = µ
∂F7
∂µ

+ T

(
∂F7
∂T
− ∂F5

∂~E2

)
+ 2

(
∂F7
∂~v2 −

∂F6

∂~E2

)
~v2 +

(
∂F7

∂(~E · ~v)
− ∂F8

∂~E2

)
(~E · ~v) +

+
(

∂F7

∂(~E · ~v)
− ∂F8

∂~E2

)
(~E · ~v)− ∂F11

∂~E2
(~E · ~v) + 1

2
∂F13

∂~E2
− ∂F12

∂~E2
(B.5)
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γε,5 = µ
∂F12
∂µ

+ T
∂F12
∂T

+ 2∂F12
∂~v2 ~v

2 + ∂F12

∂(~E · ~v)
(~E · ~v) + ∂F12

∂(~E · ~v)
(~E · ~v) + 2∂F12

∂~E2
~E2 +

−2~E2F7 − (~E · ~v)F8 − TF5 − 2~v2F6 − (~E · ~v)F8 − F11(~E · ~v) + F13
2 (B.6)

γε,6 = T
∂F1
∂µ

+ 2~v2∂F2
∂µ

+ (~E · ~v)∂F4
∂µ

+ (~E · ~v)
2

∂F14
∂µ

+ 2∂F3
∂µ

~E2 + (~E · ~v)∂F4
∂µ

+∂F10
∂µ

(~E · ~v) (B.7)

γε,7 = T
∂F5
∂µ

+ 2~v2∂F6
∂µ

+ ∂F8
∂µ

(~E · ~v) + 2~E2∂F7
∂µ

+ ∂F8
∂µ

(~E · ~v) + ∂F11
∂µ

(
~E · ~v

)
+∂F12

∂µ
− 1

2
∂F13
∂µ

. (B.8)

B.2 Electric charge density

The order one in derivatives correction to the charge density, δn, has the form

δn =
[
−∂F3
∂µ

∂t~E
2 − ∂F4

∂µ
∂t(~E · ~v) + ∂F6

∂µ
E
j∂j~v

2 + ∂F7
∂µ
E
j∂j ~E

2

+ ∂F8
∂µ
E
j∂j(~E · ~v) + ∂F9

∂µ

(
vi∂tEi + vivj∂iEj

)
− ∂F10

∂µ
vj∂tEj + ∂F11

∂µ
viEj∂jEi + ∂F12

∂µ
∂jE

j
]

+O(∂2) . (B.9)

B.3 Spatial momentum density

The spatial momentum density Pi up to and including first order in derivatives has the
form

P i = ρmv
i + βPE

i

+
(
γP,2v

j∂j ~E
2 + γP,4v

j∂j(~E · ~v) + γP,6E
j∂j~v

2 + γP,8E
j∂j ~E

2 + γP,10∂jE
j

− 2γP,12v
j∂jµ− 2γP,14E

j∂jµ
)
vi

+
(
γP,1v

j∂j ~E
2 + γP,3v

j∂j(~E · ~v) + γP,5E
j∂j~v

2 + γP,7E
j∂j ~E

2 + γP,9∂jE
j

− 2γP,11v
j∂jµ− 2γP,13E

j∂jµ
)
E
i

+γP,15E
j∂jv

i + γP,16v
j∂jE

i + γP,17∂
i~E2 + F2∂

i~v2 , (B.10)

where

γP,1 = ∂F3

∂(~E · ~v)
− ∂F4

∂~E2
+ 1

2
∂F9

∂~E2
− ∂F10

∂~E2
+ 1

2
∂F10

∂~E2
+ 1

2
∂F11

∂(~E · ~v)
− 1

2
∂F14

∂~E2
(B.11)

γP,2 = 2∂F3
∂~v2 − 2 ∂F2

∂~E2
+ ∂F8
∂~v2 −

∂F6

∂(~E · ~v)
− 1

4
∂F14

∂(~E · ~v)
− 1

2
∂F9

∂(~E · ~v)
+ 1

4
∂F9

∂(~E · ~v)
+

+1
4

∂F10

∂(~E · ~v)
+ ∂F11

∂~v2 (B.12)

γP,3 = 1
2

∂F9

∂(~E · ~v)
− ∂F10

∂(~E · ~v)
+ 1

2
∂F10

∂(~E · ~v)
+ ∂F10

∂(~E · ~v)
− 1

2
∂F14

∂(~E · ~v)
(B.13)
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γP,4 = 2∂F4
∂~v2 − 2 ∂F2

∂(~E · ~v)
+ 2∂F10

∂~v2 (B.14)

γP,5 = ∂F6

∂(~E · ~v)
− ∂F8
∂~v2 + 1

2
∂F9

∂(~E · ~v)
(B.15)

γP,6 = −1
2
∂F14
∂~v2 −

∂F9
∂~v2 + 1

2
∂F9
∂~v2 + 1

2
∂F10
∂~v2 + ∂F9

∂~v2 (B.16)

γP,7 = ∂F7

∂(~E · ~v)
− ∂F8

∂~E2
(B.17)

γP,8 = 2∂F7
∂~v2 − 2 ∂F6

∂~E2
− 1

2
∂F14

∂~E2
− ∂F9

∂~E2
+ 1

2
∂F9

∂~E2
+ 1

2
∂F10

∂~E2
(B.18)

γP,9 = ∂F12

∂(~E · ~v)
− F8 (B.19)

γP,10 = 2∂F12
∂~v2 − F9 + 1

2F9 + 1
2F10 − 2F6 −

1
2F14 (B.20)

γP,11 = 1
2
∂F4
∂µ
− 1

4
∂F9
∂µ

+ 1
2
∂F10
∂µ
− 1

4
∂F10
∂µ

+ 1
4
∂F14
∂µ
− F14 (B.21)

γP,12 = ∂F2
∂µ

(B.22)

γP,13 = 1
2
∂F8
∂µ

(B.23)

γP,14 = ∂F6
∂µ

+ 1
4
∂F14
∂µ

+ 1
2
∂F9
∂µ
− 1

4
∂F9
∂µ
− 1

4
∂F10
∂µ

(B.24)

γP,15 = 1
2F9 −

1
2F14 −

1
2F10 − F4 (B.25)

γP,16 = 1
2F9 −

1
2F14 + 3

2F10 + F4 + 1
2F10 (B.26)

γP,17 = F3 + 1
2F11 . (B.27)

B.4 Polarisation

The polarisation vector Pi up to and including order one in derivatives has the form

P
i = βPv

i + κEE
i

+
(
γP,1v

j∂j ~E
2 + γP,4E

j∂j~v
2 − γP,2Ej∂jE2 + γP,7∂jE

j − γP,11v
j∂jµ

− γP,12E
j∂jµ

)
vi

+
(
γP,2v

j∂j ~E
2 − 2γP,1vj∂j(~E · ~v) + γP,5E

j∂j~v
2 + γP,8∂jE

j − 2∂F3
∂µ

vj∂jµ

− 2∂F7
∂µ
E
j∂jµ

)
E
i

+γP,9∂i~v2 − γP,7∂i(~E · ~v)− ∂F12
∂µ

∂iµ− ∂F12

∂~E2
∂i~E2 − F7∂

i~E2 , (B.28)
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where

γP,1 = ∂F3

∂(~E · ~v)
− ∂F4

∂~E2
− ∂F10

∂~E2
(B.29)

γP,2 = ∂F8

∂~E2
− ∂F7

∂(~E · ~v)
+ ∂F11

∂~E2
(B.30)

γP,3 = 2
(
∂F4

∂~E2
− ∂F3

∂(~E · ~v)
+ ∂F10

∂~E2

)
(B.31)

γP,4 = ∂F6

∂(~E · ~v)
− ∂F8
∂~v2 −

∂F11
∂~v2 + 1

2
∂F9

∂(~E · ~v)
(B.32)

γP,5 = ∂F6

∂~E2
− ∂F7
∂~v2 + ∂F9

∂~E2
+ 2 ∂F6

∂ ~E2
− 2∂F7

∂~v2 (B.33)

γP,6 = ∂F7

∂(~E · ~v)
− ∂F8

∂~E2
− ∂F11

∂~E2
(B.34)

γP,7 = ∂F12

∂(~E · ~v)
− F8 − F11 (B.35)

γP,8 = 2∂F12

∂~E2
− 2F7 (B.36)

γP,9 = F6 + 1
2F9 −

∂F12
∂~v2 (B.37)

γP,10 = F8 + F11 −
∂F12

∂(~E · ~v)
(B.38)

γP,11 = ∂F4
∂µ

+ ∂F10
∂µ

(B.39)

γP,12 = ∂F8
∂µ

+ ∂F11
∂µ

. (B.40)
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