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1 Introduction

Drude’s model of electron transport provides the pedagogical framework for describing
charge transport in a conductor under the influence of an externally applied electric field [1].
According to the model, to prevent the indefinite acceleration of charge carriers driven by
the electric field - which continuously supplies energy and momentum - a mechanism that
dissipates energy and momentum is required. Consequently the energy and momentum sinks
balance the electric field and the system achieves a steady state.

However, in the standard hydrodynamic description of a charged fluid in an external
electric field, the hydrostatic conditions indicate that a stationary state is achieved when the
external electric field E is balanced by the gradient of the chemical potential µ. Hence, unlike
in Drude’s model, the fluid’s velocity and the external electric field are treated as independent
degrees of freedom. To address this issue, we previously investigated how to modify the
hydrostatic constraints in a boost-agnostic, electrically driven fluid through the incorporation
of relaxation terms [2]. This allows the fluid to exhibit Drude-like behaviour, where the electric
field in these stationary states is not entirely counteracted by the gradient of the chemical
potential. This approach necessitates that the fluid velocity becomes itself a thermodynamic
variable, introduced as a chemical potential conjugate to momentum. As a result, different
inertial frames represent distinct hydrodynamic states and can no longer be related to each
other through boost transformations. This contrasts with boost-invariant hydrodynamics,
where one can always move to a frame with zero spatial velocity, effectively removing it as
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a variable. The framework for describing these types of fluids is known as “boost-agnostic”
hydrodynamics [3–7]. We will review the fundamentals of this approach shortly.

As in Lagrangian mechanics, we introduced the energy and momentum relaxation terms
— analogous to non-conservative forces — by hand to the equations of motion after having
derived the conservative components using a variational principle. To maintain consistency,
we assume that we can separate the relaxation contributions into two types: those that can
be expressed in terms of stationary tensor structures and those that vanish at stationarity.
In reference [2], we focused on the first type, while this work aims to extend the analysis
by examining the relation of the energy and momentum relaxation terms of the latter type.
This means we will consider flows that achieve a steady state under the influence of an
external driving electric field and that include tensor structures in the constitutive relations
that are first-order in derivatives and vanish at stationarity. Consequently, we will also
encompass entropy-generating flows.

Let us briefly comment on the magnitude of the relaxation terms. If the momentum
relaxation rate Γ ∼ τ−1 is very small, it can be treated as a minor correction to the
hydrodynamic conservation laws. In such cases, either the relaxation term restricts the space
of stationary solutions to the hydrodynamic equations of motion or it changes them. The
former case is followed in [8]. In [2] and in this work, we consider the latter regime where Γ
is small enough (compared to microscopic decay modes) for momentum to remain a relevant
(quasi-)conserved charge, however it enters in a way that stationary conditions are modified.
In this case the relaxation terms are comparable to other thermodynamic quantities, and thus
cannot be accounted for by simply adding small corrections to the conservation equations.
Finally, in the case where Γ is large and momentum is strongly decaying, momentum ceases
to be a useful hydrodynamic variable and becomes irrelevant for dynamics at large scales.

This can be compared to the standard treatment of an external magnetic field [9–14].
When the magnetic field is small enough, B ∼ O(∂), it simply modifies the momentum
conservation equation. In the limit of a very strong magnetic field, B ≫ T 2, the system
transitions out of the hydrodynamic regime. For intermediate values, B ∼ O(1), the magnetic
field becomes a crucial part of the thermodynamics and explicitly alters the constitutive
relations, giving rise to non-dissipative Hall terms. Similarly, we can consider Γ ∼ O(∂2) to
follow the approach taken in [8, 15], while this work focuses on the case where Γ ∼ O(∂).

We will now proceed to the main part of this paper as follows: in section 2 we provide a
brief review of the formulation for a boost agnostic, charged, non-dissipative electrically driven
fluid in the absence of relaxation terms. For this we geometrise the fluid’s thermodynamics
by coupling it to an Aristotelian spacetime [2, 5, 6] and provide the hydrostaticity conditions
that determine stationary fluid flows. We also sketch the computation of the constitutive
relations associated with these stationary configurations, with further details available in [2].
In sections 3 and 4 we move away from absolute conservation of energy and momentum by
introducing relaxation terms into the hydrodynamic equations of motion at order zero and
one, respectively. More specifically in section 4 we identify the first-order derivative tensor
structures in the constitutive relations that vanish at stationarity. By enforcing positivity of
entropy production, we constrain the relevant transport coefficients and characterise energy
relaxation in terms of momentum relaxation. We then apply our theory in section 5, where
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we compute the thermo-electric conductivities of our system in the absence of microscopic
time-reversal invariance. Additionally, we identify the part of the charge current that is neither
carried by heat nor spatial momentum, defining a generalisation of the incoherent current.
In section 6, we then impose Onsager reciprocity and show that the AC thermo-electric
conductivities assume their Drude form. Moreover, we find that the contribution from the
incoherent conductivity to the electric conductivity vanishes. Finally, we conclude with a
discussion of our results in section 7.

2 Brief review of non-dissipative boost agnostic hydrodynamics

In the following section we will briefly review the formalism for describing a (d+1)-dimensional,
charged, boost agnostic fluid in the presence of an external electric field E⃗ [2, 3, 6]. We will
not introduce any relaxation terms in this section.

In global thermodynamic equilibrium, we take the fluid to be described by a pressure
P which is a function of temperature T , chemical potential µ, spatial velocity v⃗ and the
external electric field E⃗. Deriving the pressure with respect to these source terms yields
various thermodynamic densities:

n =
(

∂P

∂µ

)
, ρm = 2

(
∂P

∂v⃗2

)
, s =

(
∂P

∂T

)
, (2.1a)

βP =
(

∂P

∂(E⃗ · v⃗)

)
, κE = 2

(
∂P

∂E⃗2

)
, (2.1b)

where s is the entropy density of the fluid, ρm is the kinetic mass density and n the particle
number density. The parameters κE and βP have been introduced in [2] and are related to
the momentum density P⃗ and polarisation density P⃗ by

P⃗ =
(

∂P

∂v⃗

)
= ρmv⃗ + βPE⃗ , (2.2a)

P⃗ =
(

∂P

∂E⃗

)
= κEE⃗+ βPv⃗ . (2.2b)

We will also assume that our fluid satisfies an Euler relation of the form [2]

sT = ϵ + P − µn − ρmv⃗2 − κEE⃗2 − 2βPE⃗ · v⃗

= ϵ + P − µn − P⃗ · E⃗− P⃗ · v⃗ (2.3)

with ϵ the energy density.
Given the above global thermodynamic equilibria, we seek to describe a situation where

our system of interest can be broken up into patches of local thermodynamic equilibrium and
the flows between them. A precise way to achieve this is to geometrise the thermodynamics
of the fluid. For fluids that break boost invariance, this geometrisation naturally couples
the fluid to an Aristotelian spacetime which consists of a manifold equipped with a clock
one-form τµ and a spatial metric hµν with signature (0, 1, . . . , 1). This should be compared
with a Lorentzian geometry where the clock-form and spatial metric combine to form a locally
Lorentz boost invariant metric gµν = −τµτν + hµν .
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We further assume that the spatial metric can be decomposed into vielbeins1

hµν = δabe
a
µeb

ν , (2.4)

with a, b = 1, 2, . . . , d, and µ = 0, . . . , d where d denotes the number of spatial dimensions.
The square matrix (τµ, ea

µ) then has a non-vanishing determinant denoted by

e = det(τµ, ea
µ). (2.5)

Consequently, as the determinant is non-vanishing, the matrix is invertible with its inverse
decomposing into (−νµ, eµ

a). The components of this inverse satisfy various useful relations:

νµτµ = −1, νµea
µ = 0, eµ

aτµ = 0, eµ
aeb

µ = δb
a , (2.6)

and allow us to define a preferred symmetric two-tensor hµν by

hµρhρν = δµ
ν + νµτν . (2.7)

Although this tensor is not the inverse of the spatial metric hµν , it can be interpreted as
such on the spatial hypersurfaces defined by the clock-form τµ.

Let us remark at this point for the sake of completeness that connections that are
compatible with the independent one-form and spatial two-tensor of Aristotelian spacetime, i.e.

∇µτν = 0, ∇µhνρ = 0 (2.8)

are not unique, as opposed to the pseudo-Riemannian spacetime, where the unique metric
compatible and torsion free connection is the Levi-Civita connection. This however will not
be important for us as, in the end, we will be interested in flat Aristotelian spacetime in
Cartesian coordinates (henceforth denoted FSCC). In this limit the geometry-characterising
tensors reduce to

τµ = δ0µ, hµν = δi
µδj

νδij , νµ = −δµ
0 , hµν = δµ

i δν
j δij ,

∂µτν = 0, ∂µhνρ = 0,
(2.9)

where Latin indices only run over spatial directions.
Now that we have discussed the geometry of Aristotelian spacetimes sufficiently, we

can proceed with describing fluids moving on them. We begin by determining the fluid’s
thermodynamic quantities in terms of the geometric quantities {τµ, hµν , Aµ}, where the gauge
field accounts for the presence of a chemical potential and external electric field. The flow of
a stationary fluid will be described by a Killing vector field βµ which satisfies:

Lβτµ = 0,

LβAµ + ∂µΛ = 0,

Lβhµν = 0,

(2.10)

where Λ is a gauge parameter present to ensure that the second condition is gauge-invariant.
In this way βµ - the thermal vector - can be thought of as the time-direction of the fluid’s
dynamical evolution; that is to say it generates time translations.

1Since our spacetime is Aristotelian the vielbeins ea
µ transform under SO(d).
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Given any such time-like Killing vector field we can define a notion of temperature and
chemical potential using loops around the thermal circle [16]. In terms of our Aristotelian
tensors we find

T = 1
τµβµ

, µ = T (Aµβµ + Λ) . (2.11a)

With these definitions to hand we further define the fluid velocity in terms of the thermal
vector to be

βµ = uµ

T
(2.11b)

and normalise it by setting

uµτµ = 1 (2.11c)

such that it reduces to

uµ = (1, vi) (2.11d)

in the FSCC limit. Finally, the electric field is given by

Fµν = 2∂[µAν] = Eµτν − Eντµ (2.11e)

which, given it is expressed in terms of the gauge invariant quantity Fµν , is naturally gauge
invariant. We assume the magnetic field components of the field strength to be zero, as
magnetic fields are not considered in our setup.

As is discussed in [16] we can employ the definitions (2.11) to re-express the Killing
constraints (2.10) in terms of the hydrodynamic quantities. However, in what follows, we
will only need the hydrostaticity conditions for flat Aristotelian spacetime in Cartesian
coordinates:

∂µT = 0, ∂tv
i = 0, ∂ivj + ∂jvi = 0, ∂tEi + vj∂jEi + Ej∂iv

j = 0 (2.12a)

and
Ei − ∂iµ = 0 . (2.12b)

The Bianchi identity, assuming vanishing magnetic field, reduces in FSCC to

∂iEj − ∂jEi = 0. (2.12c)

The general curved spacetime reformulations can be found in [2]. Importantly, these
relations (2.12) tell us how a fluid can flow while still being stationary - one solution of which
on flat space is global thermodynamic equilibrium.

Thus far we have geometrised our thermodynamics and discussed conditions for the
existence of stationary fluid flows (2.10) even when the spacetime is curved. Now let W [τ, h, A]
be the generating functional for the correlation functions of such flows. This generating
functional can be expanded order by order in derivatives. For example, the leading term is

W(0)[τ, h, A] =
∫

dd+1x e P (T, µ, hµν
EµEν , hµνuµuν ,Eµuµ) (2.13)

≡
∫

dd+1x e P
(
T, µ, E⃗2, v⃗2, v⃗ · E⃗

)
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where P is the thermodynamic pressure. From the generating functional W we can define
the following important one-point functions:

δW

δhµν
= e

2T µν ,
δW

δτµ
= −eT µ ,

δW

δAµ
= eJµ . (2.14)

Diffeomorphism and gauge invariance of W then ensure that these one-point functions satisfy
the following constraints [2]

e−1∂µ

(
eT µ

ρ

)
+ T µ∂ρτµ − 1

2T µν∂ρhµν − FρµJµ = 0, (2.15a)

e−1∂µ (eJµ) = 0. (2.15b)

where Jµ is the U(1) charge current and T µ
ν is a stress tensor defined by

T µ
ν = −T µτν + T µρhρν . (2.15c)

The equations (2.15) are no more than conservation of energy/momentum and charge in
an Aristotelian spacetime and they form the equations of motion of hydrodynamics. To
complete the hydrodynamic description we must also supply constitutive relations expressing
these currents in terms of the thermodynamic charges. It is an important consequence of
the compatibility between the Killing conditions (2.10) for stationary flows of the fluid and
the above discussed symmetries that the hydrodynamic equations (2.15) are automatically
satisfied for stationary flows.

3 Relaxation at order zero

Having geometrised the fluid in the absence of relaxation, we now move away from absolute
conservation of the stress-energy-momentum tensor complex to allow for relaxation. We add
by hand non-conservative forces in the natural and normative way one would in mechanical
systems. In particular, these forces may be viewed as constraints on the stationary flows
of the system. In the FSCC limit, while maintaining U(1) charge conservation, the relaxed
equations of motion then take the form

∂tε + ∂iJ
i
ε − EiJ

i = −Γ̂ε, (3.1a)
∂tPi + ∂jT j

i − nEi = −Γ̂i
P⃗

, (3.1b)
∂tn + ∂iJ

i = 0 , (3.1c)

where ϵ = −T 0
0 denotes the energy density, J i

ϵ = −T i
0 the energy current, Pi = T 0

i the
spatial momentum density, n the charge/number density and Γ̂ε and Γ̂i

P⃗
the energy and

momentum relaxation terms in flat spacetime. The l.h.s. of (3.1) is nothing more than (2.15)
expressed in FSCC. In the following we parametrize the momentum relaxation in terms of
order-zero vectors as Γ̂i

P⃗
=
(
ΓP⃗ P i + ΓP⃗P

i
)
.

We follow the typical procedure in hydrodynamics and solve the (non-)conservation
equations (3.1) order by order in a derivative expansion. This requires us to be precise
about the derivative order counting for the electric field. Implicitly, as it entered the global
thermodynamics, we took E⃗ to be order zero above. Consequently, the polarization P⃗ is of
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order zero [2, 17] and the (non-)conservation equations of motion at lowest order in derivatives,
after imposing all stationarity conditions (2.12) other than (2.12b), become

nvi (Ei − ∂iµ) = Γ̂ε +O(∂),

n (Ei − ∂iµ) =
(
ΓP⃗ Pi + ΓP⃗Pi

)
+O(∂).

(3.2)

In the absence of relaxation terms, one must take the gradient of the chemical potential to
be order zero in derivatives [2, 17] if the electric field is strong (order zero in derivatives).
On the other hand, in the presence of relaxation terms, there exists at least two regimes
where we can satisfy (3.2). The first of these is that (2.12b) is maintained and consequently
both the momentum and energy relaxations must vanish at stationarity. This subsequently
imposes a constraint on the thermodynamics of local equilibrium through the zeroes of the
relaxation terms [18, 19].

Alternatively, we can assert that neither the l.h.s. nor the r.h.s. of (3.2) are zero on
their own, but instead these expressions must be treated as conditions for hydrostaticity as
a whole. The hydrostaticity condition (2.12b) is modified to

n(Ei − ∂iµ) = ΓP⃗Pi + ΓP⃗ Pi , (3.3)

and consequently, one finds that the energy and momentum relaxations are related

Γ̂ε =
(
ΓP⃗P

i + ΓP⃗ P i
)

vi . (3.4)

This is what one expects from the Drude model. One can subsequently show that there
is no entropy production in the relaxed case at the ideal order even in the presence of the
relaxation terms if (3.4) holds.

We now make two important simplifications for the rest of the paper; firstly, we shall
assume that we are supplied an exact hydrostaticity condition and constitutive relation
for the relaxation term. In particular, we will not allow the constitutive relation, nor the
hydrostaticity condition, to be modified order by order in derivatives and the resultant
equations of motion must respect this constraint at all orders in derivatives. Adding order
by order corrections does not in principle pose any theoretical difficulties but would reduce
clarity. Secondly, because of the rapid growth in the number of transport terms, it will
generally be convenient to work with an electric field E⃗ at order one in derivatives rather
than order zero. Similarly, we take the derivative of the chemical potential and the relaxation
terms to be order one. Given these constraints we take our hydrostaticity condition and
constitutive relation for the spatial part of the relaxation term to be:

Ei − ∂iµ − ΓPi

n = 0 , Γ̂i
P⃗
= ΓPi , (3.5)

at all orders in derivatives.
While our new hydrostaticity constraint (3.5) is taken to hold at all orders in derivatives,

it does not follow that (3.4) is without derivative correction as it was a derived consequence of
the equations of motion on hydrostatic solutions i.e. our constitutive relation for Γ̂ε cannot be
freely specified if our system is to be compatible with hydrostaticity. In fact, in the following
we will understand how this constraint between the relaxation terms Γ̂ε and Γ̂i

P⃗
must be

modified as we include entropy producing flows in our formalism.
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4 Relaxation at order one

We will require our fluid to locally obey the second law of thermodynamics such that the
divergence of the entropy current Sµ is non-negative

e−1∂µ (eSµ) ≥ 0, (4.1)

where e = det(τµ, ea
µ) and where the entropy current is the most general expression built from

the fluid variables that reduces to suµ for vanishing derivative terms. Rewriting this divergence
will allow us to isolate the non-hydrostatic contributions to the constitutive relations in
what follows. In particular, we can separate the non-entropy producing non-hydrostatic
corrections, from those that produce entropy.

We define the canonical entropy current by covariantising the thermodynamic Euler
relation (2.3). This gives the following expression2

Sµ
can = −T µ

ν βν + Pβµ − µ

T
Jµ − κEEνEνβµ − 2βPEνuνβµ , (4.2)

whose divergence is

e−1∂µ (eSµ
can) = −e−1∂µ (eT µ

ν βν)− e−1∂µ

(
eJµ µ

T

)
+ e−1∂µ (ePβµ)

− e−1∂µ (eκEEνEνβµ)− e−1∂µ (e2βPEνuνβµ) .

(4.3)

This expression, as written, contains all orders in the derivative expansion of the hydrodynamic
variables.

The first two terms of the r.h.s. of (4.3) can be rewritten using the (non-)conservation
equation of the energy-momentum tensor (2.15a) and the conservation equation of the charge
current (2.15b). In particular, we can covariantise the energy and momentum relaxation
terms and modify (2.15a) to

e−1∂µ

(
eT µ

ρ

)
+ T µ∂ρτµ − 1

2T µν∂ρhµν = FρµJµ + Γρ , (4.4)

where Γρ is defined such that it reduces in the FSCC limit to Γρ =
(
Γ̂ϵ,−Γ̂i

P⃗

)
as given in

equation (3.1). Contracting this equation with the thermal vector βµ leads to

e−1∂µ

(
eβρT µ

ρ

)
= T µ

ρ ∂µβρ − T µβρ∂ρτµ + 1
2T µνβρ∂ρhµν + FρµβρJµ + βρΓρ , (4.5)

which can be further manipulated so that it is expressed in terms of the hydrostatic con-
straints (2.10). One subsequently obtains

e−1∂µ

(
eβρT µ

ρ

)
= −T µLβτµ + 1

2T µνLβhµν + FρµβρJµ + βρΓρ (4.6)

such that the divergence of the canonical entropy current takes the form

e−1∂µ (eSµ
can) = T µLβτµ − 1

2T µνLβhµν − Jµ
(
LβAµ − ∂µ

(
uνAν − µ

T

))
+ e−1∂µ (ePβµ)− e−1∂µ (eκEEνEνβµ)− e−1∂µ (e2βPEνuνβµ)
− βρΓρ .

(4.7)

2At the end of section 2 we have decided to take E⃗ to be order one in derivatives in writing the constitutive
relations, however here we are still considering it to be order zero since it does not cause too many complications.
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Let us introduce the subscript (0) to indicate ideal fluid terms. The ideal fluid part
of the entropy current Sµ

(0) has zero divergence, e−1∂µ

(
eSµ

(0)

)
= 0, due to thermodynamic

identities and hence does not contribute to entropy production. Using this observation we
obtain the following identity

e−1∂µ (e {Pβµ − 2βPEνuνβµ − κEEνEνβµ})

= −T µ
(0)Lβτµ + 1

2T µν
(0)Lβhµν + Jµ

(0)LβAµ − ∂µ (βρAρ) Jµ
(0) + ∂µ

(
µ

T

)
Jµ
(0) .

(4.8)

which allows us to eliminate the pressure from (4.7). We arrive to

e−1∂µ (eSµ
can) =

(
T µ − T µ

(0)

)
Lβτµ − 1

2
(
T µν − T µν

(0)

)
Lβhµν −

(
Jµ − Jµ

(0)

)
δBAµ

−βρΓρ, (4.9)

where we have introduced the notation

δBAµ := LβAµ − ∂µΛ = LβAµ − ∂µ

(
uνAν − µ

T

)
(4.10)

In the absence of relaxation Γρ = 0, upon imposition of the hydrostaticity constraints (2.10),
we see that (4.9) vanishes identically, independently of the derivative order at which we
are working. This is to be expected, if entropy was produced on hydrostatic flows then
the system would not be stationary.

If we include relaxation terms in (4.8), the Killing constraint δBAk = 0 needs to be
adjusted so that for hydrostatic flows we find no entropy production. We saw that in the
FSCC limit, denoted by a tilde, the condition for hydrostaticity is modified to

δ̃BAk = − 1
T

(
Ek − T∂k

µ

T

)
= 0 → δ̃′BAk := − 1

T

(
Ek − T∂k

µ

T
− ΓPk

n

)
= 0, (4.11)

where k runs only over the spatial indices. We can write this expression in a coordinate
covariant manner as

δ′BAµ = δBAµ − 1
nT

hµνhνρΓρ . (4.12)

Subsequently the divergence of the canonical entropy current, in terms of δ′BAµ, is given by

e−1∂µ (eSµ
can) +

(
βρ + 1

nT

(
Jν − Jν

(0)

)
hνσhσρ

)
Γρ

=
(
T µ − T µ

(0)

)
Lβτµ − 1

2
(
T µν − T µν

(0)

)
Lβhµν −

(
Jµ − Jµ

(0)

)
δ′BAµ . (4.13)

For the ideal fluid, where Jµ → Jµ
(0), the second term above is nothing more than (3.4)

with an order one electric field. To proceed further we need to classify corrections to the
constitutive relations into hydrostatic, non-hydrostatic non-dissipative and dissipative pieces.
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4.1 Hydrostatic terms

A useful decomposition of the types of terms one can encounter on the r.h.s. of (4.13) is
given by splitting each of the pieces involving the constitutive relations into hydrostatic (HS),
non-hydrostatic non-dissipative (NHS) and dissipative (D) corrections [5, 20, 21] i.e.:

T µ − T µ
(0) = T µ

HS + T µ
NHS + T µ

D,

T µν − T µν
(0) = T µν

HS + T µν
NHS + T µν

D ,

Jµ − Jµ
(0) = Jµ

HS + Jµ
NHS + Jµ

D .

(4.14)

Let us proceed in order to define and deal with these terms. We note first that there are
two ways that the equations of motion (2.15b) and (4.4) can be identically satisfied at
hydrostaticity. Either, the derivative of the current, T µ, T µν and Jµ, is proportional to
a hydrostaticity condition, products of hydrostaticity conditions or their derivatives or -
alternatively - the current itself is constructed from such terms. The hydrostatic contributions
are of the former type while the non-hydrostatic and dissipative contributions are the latter.
Consequently, the NHS and D contributions in (4.14) vanish upon imposing hydrostaticity
conditions while the HS do not. Nevertheless the HS contributions are constructed such
that upon substitution into the equation of motion the resultant expression vanishes when
we consider hydrostatic flows.

In the absence of the relaxation term Γρ ≡ 0, the hydrostatic parts of the constitutive
relations, corresponding to stationary flows of the system, can be obtained from the equilibrium
generating functional [6, 16]. The generating functional to order one in derivatives takes
the form

W =
∫

dd+1x e

[
P (T, µ, hµνuµuν) +

∑
i

Fi (T, µ, hµνuµuν) s̃
(i)
(1) +O(∂2)

]
, (4.15)

with the scalar basis

s̃(1) = {νµ∂µT, νµ∂µµ, νµ∂µ(hρσuρuσ)} . (4.16)

Varying with respect to the background fields (2.14), we find the following HS constitutive
relations at order one in derivatives

Jµ
HS = nuµ + ∂F0

∂µ
uµνρ∂ρT + ∂F1

∂µ
uµνρ∂ρµ + ∂F2

∂µ
uµνν∂ν (hρσuρuσ)

−1
e

∂ν (eννF1)uµ +O
(
∂2
)

, (4.17a)

T µ
HS = ϵuµ +

(
∂F0
∂T

Tuµ + ∂F0
∂µ

µuµ + 2∂F0
∂u2 hρσuρuσuµ

)
νλ∂λT

+
(

∂F1
∂T

Tuµ + ∂F1
∂µ

µuµ + 2∂F1
∂u2 hρσuρuσuµ

)
νλ∂λµ

+
(

∂F2
∂T

Tuµ + ∂F2
∂µ

µuµ + 2∂F2
∂u2 hρσuρuσuµ

)
νλ∂λ

(
hαβuαuβ

)
−1

e
∂ρ (eF0ν

ρ)Tuµ − 1
e

∂ρ (eF1ν
ρ)µuµ − 2

e
∂ρ (eF2ν

ρ)hαβuαuβuµ

+O
(
∂2
)

, (4.17b)
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T µν
HS = Phµν + ρmuµuν +

(
hµνF0ν

ρ + 2∂F0
∂u2 uµuννρ − 2F0h

ρ(µνν)
)

∂ρT

+
(

hµνF1ν
ρ + 2∂F1

∂u2 uµuννρ − 2F1h
ρ(µνν)

)
∂ρµ

+
(

hµνF2ν
ρ + 2∂F2

∂u2 uµuννρ − 2F2h
ρ(µνν)

)
∂ρ

(
hαβuαuβ

)
−2

e
∂ρ (eF2ν

ρ)uµuν +O
(
∂2
)

. (4.17c)

In the absence of relaxation it is straightforward but tedious to verify that once these
constitutive relations are substituted into the equation of motion (2.15b) and (4.4), the result
vanishes upon imposition of the hydrostaticity conditions (2.10).

In the presence of relaxation, one cannot obtain the hydrostatic contributions from
equilibrium generating functional. In particular, we must now satisfy

∂µT µ
HS ν − FνµJµ

HS − ΓHS
ν = 0 , ∂µJµ

HS = 0 (4.18)

upon imposition of the modified hydrostaticity condition (3.5). The result at O(∂0) in the
constitutive relations, or O(∂) in the equations of motion, we already know. Namely

ΓHS
(1),ν = ρmΓ

(
v⃗2

v⃗i

)
. (4.19)

So we now consider O(∂) in the constitutive relations, or O(∂2) in the equations of motion.
With some work, it is possible to show from (4.17), that the order two piece of (4.18) vanishes
using only the conditions presented in (2.12a). Consequently, we are forced to take ΓHS

(2),ν ≡ 0.
Now that we have the HS constitutive relations, we can turn to considering production

of entropy once more. Again, in the absence of relaxation, we see that the divergence
of the canonical entropy current (4.13) vanishes upon imposing hydrostaticity. Outside of
hydrostaticity it is not difficult to convince oneself that the hydrostatic terms do not have fixed
sign.3 Thus, if we were to impose that the canonical entropy current must be positive definite,
we would be forced to eliminate stationary configurations from our fluid through setting the
relevant term in the equilibrium generating functional (i.e. Fi or its thermodynamic derivative)
to zero. To avoid eliminating swathes of stationary flows, we search for an Sµ

non such that

e−1∂µ (eSµ
non) =− T µ

HSLβτµ + 1
2T µν

HSLβhµν + Jµ
HSδBAµ . (4.20)

We can then rewrite the equation for the divergence of the canonical entropy current as

e−1∂µ (eSµ) = (T µ
NHS + T µ

D)Lβτµ − 1
2 (T µν

NHS + T µν
D )Lβhµν

− (Jµ
NHS + Jµ

D) δBAµ , (4.21a)
Sµ = Sµ

can + Sµ
non , (4.21b)

3It is useful to imagine a hypothetical fluid where all transport coefficients are zero leaving only the
hydrostatic contributions to the constitutive relations. Outside of hydrostaticity, entropy production should
still be positive definite for this imaginary fluid.
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where we remind the reader that this is the Γρ = 0 case. At order one Snon takes the form

Sµ
non = νµ

T

(
F0u⃗

λ∂λµ + F1u⃗
λ∂λT + F2u⃗

λ∂λu⃗2
)

− u⃗µ

T

(
F0ν

µ∂µµ + F1ν
µ∂µT + F2ν

µ∂µu⃗2
)

. (4.22)

It is upon the new entropy current Sµ that we subsequently impose positivity of entropy
production as a constraint on our system. In doing so we have ensured all stationarity
compatible terms in the constitutive relations are consistent with positivity of entropy
production even outside of the hydrostatic limit. Said another way, hydrostatic terms do
not contribute to entropy production.

In the presence of relaxation, Γρ ̸= 0, the hydrostatic contributions once again do not
make positive definite contributions to the divergence of the canonical entropy current. The
major difference to the case without relaxation is that we have more freedom to include
these configurations. In particular, because we can fix the energy relaxation to mop up
any inconvenient terms, we search for a non-canonical entropy current contribution Sµ

non
and a relaxation scalar Γnon defined by

e−1∂µ (eSµ
non) + Γnon = −T µ

HSLβτµ + 1
2T µν

HSLβhµν + Jµ
HSδ′BAµ , (4.23)

such that

e−1∂µ (eSµ) = (T µ
NHS + T µ

D)Lβτµ − 1
2 (T µν

NHS + T µν
D )Lβhµν − (Jµ

NHS + Jµ
D) δ′BAµ

−
(

βρ + 1
nT

(Jν
NHS + Jν

D)hνσhσρ
)
Γρ ≥ 0 , (4.24a)

Sµ = Sµ
can + Sµ

non , Γnon = − 1
nT

Jµ
HShµσhσρΓρ . (4.24b)

We see that (4.23) is nothing more than a rewriting of (4.20) which gives us the definitive
identification of Γnon. The difference between the two scalar terms (divergence of the non-
canonical entropy current and relaxation scalar) is that the latter must vanish in the no
relaxation limit and thus is proportional to Γρ. This requirement prevents one from taking
terms in e−1∂µ(eSµ

non) and hiding them in Γnon. With that said we now have eliminated all
hydrostatic terms from our positivity of entropy production constraint (4.24) which once
more makes all stationary configurations consistent with positivity of entropy production,
as it did for the case without relaxation.

4.2 Non-hydrostatic, non-dissipative terms

Having eliminated problems in the hydrostatic sector, we can now consider the NHS and
D contributions to (4.24). The former terms are separated from the latter by being those
that make no contribution to entropy production. In other words

T µ
NHSLβτµ − T µν

NHS
1
2Lβhµν − Jµ

NHSδ′BAµ ≡ 0 . (4.25)

As we noted above, the non-hydrostatic non-dissipative part of the constitutive relations must
be expressed in terms of the hydrostaticity constraints, their products and/or derivatives. So,
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at order one, the NHS constitutive relations must be linear combinations of

Lβτµ , Lβhµν , δ′BAµ . (4.26)

Consequently, (4.25) is a quadratic form in these hydrostaticity constraints. For the resultant
quadratic form to fail to contribute to entropy production independently of the particular flow,
the corresponding quadratic form matrix must be antisymmetric. Thus the non-hydrostatic
non-dissipative contributions at first order in derivatives must take the form4


T µ
(1),NHS

T µν
(1),NHS

Jµ
(1),NHS

 =


0 N

µ(ρσ)
2 Nµρ

1
−N

ρ(µν)
2 0 N

ρ(µν)
3

−Nρµ
1 −N

µ(ρσ)
3 0


 Lβτρ

−1
2Lβhρσ

−δ′BAρ

 , (4.27)

so that

T µ
(1),NHSLβτµ − T µν

(1),NHS
1
2Lβhµν − Jµ

(1),NHSδ′BAµ

=

 Lβτρ

−1
2Lβhρσ

−δBAρ


T

0 N
ρ(µν)
2 Nρµ

1
−N

µ(ρσ)
2 0 N

µ(ρσ)
3

−Nµρ
1 −N

ρ(µν)
3 0


 Lβτµ

−1
2Lβhµν

−δ′BAµ

 ≡ 0 . (4.28)

We note that the tensor elements of (4.27) are order zero in derivatives.
Breaking boost symmetry by introducing a fixed background velocity v⃗ means that the

SO(d) spatial rotation symmetry reduces to the SO(d − 1) subgroup. The tensors appearing
in the coefficient matrix have to respect this reduced symmetry which preserves the absolute
values of the velocity, which labels different states [5, 6]. With this being said, the tensor
elements of (4.27) can be constructed using the SO(d − 1) invariant tensors{

νµ, P µν = hµν − nµnν , nµ = hµνhνρuρ

√
u2

}
(4.29)

where nµ denotes the normalised velocity with u2 = hµνuµuν while P µν is a projector
orthogonal to nµ. The most general SO(d − 1) symmetric rank-2 tensor we can construct
from the reduced set that is order zero is

Nµν
1 := α1P

µν + α2n
µnν + 2α3n

(µνν) + α4ν
µνν , (4.30)

while the most general three-tensor, which is symmetric in two of the indices, is given by

Nρ(µν)
p := β1,pνρP µν + β2,pnρP µν + 2β3,pP ρ(µνν) + 2β4,pP ρ(µnν)

+ β5,pnρnµnν + β6,pνρnµnν + 2β7,pnρn(µνν) + 2β8,pνρn(µνν)

+ β9,pnρνµνν + β10,pνρνµνν ,

(4.31)

with p = 2, 3. We have obtained the most general tensor structures consistent with our
symmetries and defined the 24 non-hydrostatic, non-dissipative transport coefficients. This
completes our analysis of the NHS sector.

4Brackets on indices T (ab) indicate symmetrisation i.e. T (ab) = 1
2

(
T ab + T ba

)
.
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4.3 Dissipative terms

The dissipative terms lead to a non-zero production of entropy. Analogously to the NHS
case, because at order one the constitutive relations must be linear combinations of the
hydrostaticity constraints (4.26), the dissipative contributions can be written as the following
quadratic form

0 ≤ T µ
(1),DLβτµ − T µν

(1),D
1
2Lβhµν − Jµ

(1),Dδ′BAµ

=

 Lβτρ

−1
2Lβhρσ

−δBAρ


T

Dρµ
1 D

ρ(µν)
2 Dρµ

3
D

µ(ρσ)
2 D

(ρσ)(µν)
4 D

µ(ρσ)
5

Dµρ
3 D

ρ(µν)
5 Dρµ

6


 Lβτµ

−1
2Lβhµν

−δ′BAµ

 ,
(4.32)

where the symmetric coefficient matrix, in contrast to the antisymmetric matrix of (4.27),
allows for entropy production. Its contribution to the constitutive relations is simply given by

T µ
(1),D

T µν
(1),D

Jµ
(1),D

 =


Dµρ

1 D
µ(ρσ)
2 Dµρ

3
D

ρ(µν)
2 D

(µν)(ρσ)
4 D

ρ(µν)
5

Dρµ
3 D

µ(ρσ)
5 Dµρ

6


 Lβτρ

−1
2Lβhρσ

−δ′BAρ

 . (4.33)

The rank-2 and -3 tensors Dµν
p and D

µ(νρ)
q of this matrix take the same form as (4.30) and (4.31)

with appropriate renaming of transport coefficients, while the rank-4 tensor is given by

D
(µν)(ρσ)
4 = t

(
P µρP νσ + P µσP νρ − 2

d − 1P µνP ρσ
)
+ 4γ1ν

(µnν)n(ρνσ)

+ γ2n
µnνnρnσ + γ3P

µνP ρσ + 4γ4ν
(µP ν)(ρνσ)

+ γ5 (P µρnνnσ + P νρnµnσ + P µσnνnρ + P νσnµnρ)

+ γ6 (P ρσnµnν + P µνnρnσ)− 4γ7
(
ν(µP ν)(ρnσ) + n(µP ν)(ρνσ)

)
− 2γ8

(
ν(µnν)P ρσ + P µνn(ρνσ)

)
− 2γ9

(
ν(µnν)nρnσ + nµnνn(ρνσ)

)
.

(4.34)

We have now obtained the most general tensor structures consistent with our symmetries
and defined the 42 dissipative transport coefficient terms.

Finally, we can turn to the constraint on the relaxation terms given by the final term
in (4.24). Their contribution to entropy production must be positive definite5 and thus to
the derivative order we are working in

Γρ = −T Γ̂σ

((
βσ + 1

nT
(Jµ

NHS + Jµ
D)hµνhνσ

)
τρ −

1
T

hσµhµρ

)
−Γρσ

(
βσ + 1

nT
(Jµ

NHS + Jµ
D)hµνhνσ

)
, (4.35)

where Γ̂σ is a spatial vector, Γρσ is a symmetric matrix with strictly positive eigenvalues
and both quantities are O(∂). The first term always makes a trivial contribution to entropy

5We thank the reviewer for spotting our oversight here as we had not made it sufficiently clear that we
were supplied a constitutive relation for the relaxation term. This does not change any of our conclusions or
formulae.
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production while the second term in (4.35) acts like a dissipative contribution from the
relaxation term. To second order in derivatives, just as we did for the transport coefficients,
we can decompose the tensor Γµν as

Γµν = Γ (c1τµτν + c2hµν) +O(∂3) (4.36)

with Γ ∼ O(∂) and c1, c2 > 0.
When defining our quasihydrodynamic system, as we discussed earlier, it is necessary

to specify three constitutive relations - one each for T µν , Jµ and Γµ as we discussed above.
While a larger range of possibilities exists for Γµ that are compatible with positivity of
entropy production (as we can see from (4.35)), we made the simplifying assumption that
there exists a frame where in FSCC the spatial part of the relaxation takes the form (3.5)
at all orders in derivatives. The time component of Γµ is not a free variable but has to be
fixed if we wish to satisfy positivity of entropy production. In particular, we see that the
energy relaxation term must receive derivative corrections which at first order in derivatives
in the FSCC limit are given by [22]

Γ̂ε = ρm

n
Γvj

(
nvj + J j

(1),NHS + J j
(1),D

)
+O(∂3) . (4.37)

This completes our first aim of analysing relaxation at order one in derivatives for a modified
hydrostaticity constraint of the form (3.5).

4.4 Moving to the thermodynamic density frame

Up till now we have used the “thermodynamic frame” where the thermal vector βµ and the
U(1) gauge parameter Λ are chosen to assume the ideal order values, i.e. such that they
do not receive derivative corrections given by

βµ = uµ

T
, Λ = µ − uµAµ

T
. (4.38)

However, as has been pointed out in [6], this choice does not constitute a complete fixing
in the sense that certain redefinitions of the hydrodynamic variables uµ, T and µ leave the
dynamics of the theory unaltered.

To alleviate the frame ambiguity, we first note that the equations of motion can be
expressed as a linear combination of Lβτµ, Lβhµν and δBAµ. Correspondingly they can
be used to eliminate any (d + 1 + 2) number of linear combinations of these terms in
higher order constitutive relations, where d denotes the number of spatial dimensions. This
results in d(d + 5)/2 independent components. To fix the remaining freedom we choose the
“thermodynamic density frame” [6] for which the independent components that the constitutive
relations are being expanded in are hµνLβτν , hµρhνσLβhρσ and hµνδβAν . The non-hydrostatic
sector of this frame coincides with the one of the “density frame” which is defined such that
the energy, momentum and particle number are equal to their ideal order values

T µτµ = ϵ, T 0µ = ρm (uµ − νµ) , Jµτµ = n. (4.39)
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Then, only the spatial components of the tensor structures of the coefficient matrix
occur and the constitutive relations reduce to [6]

T µ
(1),NHS

T µν
(1),NHS

Jµ
(1),NHS

 = T


0 N

µ(ρσ)
2 Nµρ

1
−N

ρ(µν)
2 0 N

ρ(µν)
3

−Nρµ
1 −N

µ(ρσ)
3 0


 Lβτρ

−1
2Lβhρσ

−δBAρ

 , (4.40)

and 
T µ
(1),D

T µν
(1),D

Jµ
(1),D

 = T


Dµρ

1 D
µ(ρσ)
2 Dµρ

3
D

ρ(µν)
2 D

(µν)(ρσ)
4 D

ρ(µν)
5

Dρµ
3 D

µ(ρσ)
5 Dµρ

6


 Lβτρ

−1
2Lβhρσ

−δBAρ

 . (4.41)

with

Nµν
1 := α1P

µν + α2n⃗
µn⃗ν

Nµ(ρσ)
p := βp,2n⃗

µP ρσ + 2βp,4P
µ(ρn⃗σ) + βp,5n⃗

µn⃗ρn⃗σ

Dµν
q := ᾱq,1P

µν + ᾱq,2n⃗
µn⃗ν

Dµ(ρσ)
r := β̄r,2n⃗

µP ρσ + 2β̄r,4P
µ(ρn⃗σ) + β̄r,5n⃗

µn⃗ρn⃗σ

D
(µν)(ρσ)
4 := t

(
P µρP νσ + P µσP νρ − 2

d − 1P µνP ρσ
)
+ γ2n⃗

µn⃗ν n⃗ρn⃗σ + γ3P
µνP ρσ

+ 4γ5n⃗
(µP ν)(ρn⃗σ) + γ6 (n⃗µn⃗νP ρσ + P µν n⃗ρn⃗σ) ,

(4.42)

with p = {2, 3}, q = {1, 3, 6}, r = {2, 5}, n⃗µ = (uµ − νµ) /|uµ − νµ| and P µν = hµν − n⃗µn⃗ν

as before.

5 Conductivities

We now turn our interest to the analysis of the linear response of the such relaxed fluids, in
particular we look at the AC conductivities. We define a response matrix of the following form δJi

δQi

δPi

 =

 σij Tαij ζ1ij
T ᾱij Tκij ζ2ij
ζ3ij ζ4ij ζ5ij




δEj

δ
(
−∂jT

T

)
δv0j

 , (5.1)

which specifies how each of the charge currents (electric δJ i, heat δQi = δJ i
E −µδJ i ≡ δT i

0−
µδJ i and spatial momentum P i) respond to perturbations of the electric field, temperature
and spatial velocity. In contrast to the relativistic case, in the boost-agnostic case the electric
current J i and the momentum current P i are independent. Consequently, we extend the
standard conductivity matrix by the coefficients ζis to capture the full transport behaviour.

To obtain the matrix in (5.1) we linearise and solve the hydrodynamic equations in the
presence of the sources indicated in the vector of (5.1). We consider small fluctuations of our
fluid away from a stationary configuration with zero spatial velocity, constant temperature
T and chemical potential µ i.e.

µ(xµ) = µ + δµ(xµ), T (xµ) = T + δT (xµ), (5.2a)
uµ(xµ) = (1, δvx(xµ), δvy(xµ), δvz(xµ)) . (5.2b)
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Subsequently, the spatially Fourier-transformed linearised conservation equations assume
the form

∂tφa(t, k) + Mab(k)φb(t, k) = 0, (5.3)

where φa denotes the fluctuations of the hydrodynamic variables φa = (δϵ, δP i, δn). The
matrix Mab depends on the specific expression for the conservation equations and constitutive
relations of above. The retarded Green’s function are then given by [23]

GR
ab(z, k) = −(1 + izK−1(z, k))acχcb, (5.4)

with Kab = −izδab + Mab(k) and χab the susceptibility matrix

χab =
∂φa

∂λb
, (5.5)

where λa = ( δT
T , δvi, δµ − µ

T δT ).
The tensors (4.42) appearing in the constitutive relations have been expressed in terms of

normalised velocities. In order for the corresponding terms to be regular for vanishing spatial
velocities, which characterises the state around which we fluctuate, we need to assume that
the associated transport coefficients that multiply the tensor structures satisfy a Taylor series
expansion in u2 ≡ |u⃗|2. For regularity, we then have to demand the transport coefficients
to satisfy the conditions listed in appendix A.

With this above caveat accepted, the AC conductivities given by the k⃗ → 0⃗ limit of (5.4)
from our hydrodynamic model are6

σ(ω, 0⃗) = ᾱ6,1 +
n(n − Γρmᾱ6,1)

ρm(Γ− iω) , (5.6a)

α(ω, 0⃗) = ᾱ3,1 + α1 − ᾱ6,1µ

T
+ s(n − ᾱ6,1Γρm)

ρm(Γ− iω) , (5.6b)

ᾱ(ω, 0⃗) = ᾱ3,1 − α1 − ᾱ6,1µ

T
+

n
(
s + Γρm(ᾱ6,1µ+α1−ᾱ3,1)

T

)
ρm(Γ− iω) , (5.6c)

κ(ω, 0⃗) = ᾱ1,1 − 2ᾱ3,1µ + ᾱ6,1µ
2

T
+ s(sT + Γρm(−ᾱ3,1 + α1 + ᾱ6,1µ))

ρm(Γ− iω) , (5.6d)

ζ1(ω, 0⃗) = n − ᾱ6,1Γρm

Γ− iω
, (5.6e)

ζ2(ω, 0⃗) = sT + Γρm (ᾱ6,1µ + α1 − ᾱ3,1)
Γ− iω

, (5.6f)

ζ3(ω, 0⃗) = n

Γ− iω
, (5.6g)

ζ4(ω, 0⃗) = sT

Γ− iω
, (5.6h)

ζ5(ω, 0⃗) = ρm

Γ− iω
, (5.6i)

6We are setting to zero the hydrostatic terms, since they take the same form with or without relaxation
rates.
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where we have not imposed Onsager reciprocity (for example α ̸= ᾱ). One motivation for
avoiding the imposition of this symmetry comes from our modified hydrostaticity condi-
tion (3.5), which we repeat here for ease:

Ei − ∂iµ − Γ
n

Pi = 0 . (5.7)

All other hydrostaticity conditions (2.12a) have definite eigenvalues under time reversal; (3.5)
is the exception. It explicitly breaks time reversal symmetry and is fundamental to defining
the stationary states. However, in the case of vanishing relaxations and taking α1 = 0
(which breaks Onsager relations even in the absence of relaxations [6]), this expression gains
a definitive sign and indeed:

α = ᾱ = ᾱ3,1 − ᾱ6,1µ

T
+ ins

ρmω
, ζ1 = ζ3 , ζ2 = ζ4 . (5.8)

We leave a more detailed analysis of the consequences of Onsager reciprocity for the next
section.

The result obtained in equation (5.6a) for the electric conductivity closely resembles
certain expressions obtained using holographic methods. To make contact with the literature,
call ᾱ6,1 = σ0 the intrinsic conductivity which appears in relativistic hydrodynamics and
further notice that σ(ω → 0) = σDC = n2/ρmΓ. With these definitions we can rewrite (5.6a) as

σ(ω) = σ0 +
σDC − σ0
1− iωτ

(5.9)

where τ = Γ−1. This expression clearly differs from the standard hydrodynamic conductivity,
which is the sum of a coherent Drude part and an incoherent term parametrized by σ0, but
appears in certain holographic models when the momentum-breaking parameter Γ becomes
large enough [24–26].

We complete our goal of obtaining the conductivities by identifying an incoherent current.
In the case of relativistic hydrodynamics with a U(1) charge, the incoherent current is
defined by

J i
inc. =

sT

ϵ + p
J i − n

ϵ + p
Qi . (5.10)

This current has two nice properties

⟨J i
incJ

j
inc⟩(ω, 0⃗) = ᾱ6,1δ

ij := σincδ
ij , ⟨J i

incP
j⟩(ω, 0⃗) = 0 . (5.11)

Consequently, it represents the charge not carried along by spatial momentum during a flow.
In the boost-agnostic case, we seek to define a similar current, but now the momentum and
heat are distinct - unlike the relativistic case. Taking the most generic linear combination
of the spatial currents gives

J i
inc. = c0J

i − c1Q
i − c2P

i , (5.12)

and we would like to identify the part of the charge current that is carried neither by heat,
nor spatial momentum i.e. we impose the constraints

⟨J i
incJ

j
inc⟩(ω, 0⃗) = ᾱ6,1δ

ij , ⟨J i
incQ

j⟩(ω, 0⃗) = 0 , ⟨J i
incP

j⟩(ω, 0⃗) = 0 . (5.13)
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Using the zero wave-vector, finite frequency expressions (5.6), we soon find that the coefficients
c0, c1 and c2 are given in terms of transport terms by

c0 = ±
√

ᾱ6,1
√

µ(µᾱ6,1 − 2ᾱ3,1) + ᾱ1,1√
ᾱ6,1ᾱ1,1 − ᾱ2

3,1 + α2
1

(5.14a)

c1 = ±
√

ᾱ6,1(−µᾱ6,1 + ᾱ3,1 + α1)√
(µ(µᾱ6,1 − 2ᾱ3,1) + ᾱ1,1)

(
ᾱ6,1ᾱ1,1 − ᾱ2

3,1 + α2
1

) (5.14b)

c2 = ±
√

ᾱ6,1(ρ(µ(α1 − ᾱ3,1) + ᾱ1,1)− (p + ϵ)(−µᾱ6,1 + ᾱ3,1 + α1))

ρm

√
(µ(µᾱ6,1 − 2ᾱ3,1) + ᾱ1,1)

(
ᾱ6,1ᾱ1,1 − ᾱ2

3,1 + α2
1

) (5.14c)

If we try to recover the relativistic incoherent current from these expressions we will find that
they diverge as we are overconstraining our system by requiring that ⟨J i

inc.Q
i⟩(ω, 0⃗) = 0.

The expressions given above (5.14) do not satisfy what we would desire as the coefficients
are given as functions of transport coefficients and not thermodynamic susceptibilities and/or
global thermodynamic parameters of the system (e.g. n, ϵ, P . . . ). We invoke another property
of the incoherent current to remedy this fault, namely, we impose

⟨J i
incQ

j⟩(0, k⃗) = 0 , ⟨J i
incP

j⟩(0, k⃗) = 0 . (5.15)

Using the above constraints, it is not hard to show that c0 and c1 can be expressed in terms
of thermodynamic susceptibilties and the arbitrary coefficient c2,

c0 = −c2

(
χP P χQQ − χ2

QP

χJQχQP − χJP χQQ

)
, (5.16a)

c1 = −c2

(
χJQχP P − χJP χQP

χJQχQP − χJP χQQ

)
, (5.16b)

where χab represents the thermodynamic susceptibility for the currents a and b. Equating
these expressions to (5.14) we find that it is sufficient to constrain α1 in terms of the other
transport coefficients

α1 = µᾱ6,1 − ᾱ3,1 +
(
µ2ᾱ6,1 − 2µᾱ3,1 + ᾱ1,1

) χJQχP P − χJP χP Q

χP P χQQ − χ2
QP

, (5.17)

and choose c0 and c1 as in (5.16) to ensure that there is at least one incoherent current
satisfying the desired properties. Of course, there is in fact a whole family among which
we can choose a candidate.

6 The consequences of imposing Onsager reciprocity

We now turn to consider the consequence of imposing microscopic time reversal covariance
on the system. From the conductivities of the previous section (5.6), it is easy to see that
we must require that

α1 = 0 , ᾱ3,1 =
(

sT

n
+ µ

)
ᾱ6,1 , (6.1)
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as α = ᾱ in a time reversal covariant system. However, this is not the only constraint imposed
by time reversal covariance. In particular, it is necessary for all the correlators to satisfy

GR
ab(ω, k) = ηaηbG

R
ba(ω,−k), (6.2)

with ηa = ±1 being the time-reversal eigenvalue of the field φa. Applying this relation (6.2) to
the retarded Green’s function of linear response theory (5.4), leads to the following conditions
that need to be satisfied

χSMT (−k)− M(k)χS = 0, S = diag(1,−1,−1,−1, 1) , (6.3)

for any theory with our content of current. The matrix S is given by the time-reversal
eigenvalues of the φs.

From (6.3) we see that in our model, if we want to respect microscopic time reversal
symmetry in the effective correlators at non-zero frequency and wavevector for a state a
zero velocity, we have to impose 0 −iΓρmqiᾱ3,1 0

−iΓρmqiᾱ3,1 0 −iΓρmqiᾱ6,1
0 −iΓρmqiᾱ6,1 0

 = 0 , (6.4)

in addition to (6.1). It is clear from the above matrix that in the standard boost agnostic
case with vanishing relaxations, Onsager reciprocity is satisfied by (6.1) without having to
impose any further constraints on the dissipative part of the constitutive relations.

In the relaxed case however, the transport coefficients ᾱ6,1 and ᾱ3,1 have to vanish to
satisfy (6.4). Naturally this is consistent with the conductivity constraint (6.1) as it trivialises
the equation. Consequently the thermoelectric conductivities in (5.6) reduce to

σ = n2

ρm(Γ− iω) , α = ᾱ = ns

ρm(Γ− iω) , κ = s2T

ρm(Γ− iω) . (6.5)

Thus we have reached one of our major conclusions: if we impose positivity of entropy
production and Onsager reciprocity, then we find that the incoherent conductivities must
vanish and we obtain the Drude result for the electric conductivity

σ = σDC
1− iωΓ−1 (6.6)

with the DC conductivity being given by

σDC = n2

ρmΓ . (6.7)

Thus, the incoherent conductivity can only appear if the system does not form a steady
state or if we violate Onsager reciprocity. This result could be anticipated from the earlier
work on stationary flows (where there is also a non-trivial flow of charge in the stationary
state). However, we have now shown indeed that the DC conductivity obtained from the full
dissipative theory and the stationary sector must agree. This conclusion is independent of
the time-reversal symmetry properties of the retarded correlators, since even the conductivity
in (5.6a) has a coherent DC limit. Contrariwise, in systems where relaxation rates do not allow
for our driven steady states, one can still potentially find a non-zero incoherent conductivity
and preserve Onsager relations [8, 15].
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7 Discussion

In this paper, we extended the discussion of [2] on the feasibility of modifying hydrostaticity
constraints using relaxation terms. Our analysis incorporates tensor structures that vanish
at stationarity, including dissipative ones, enabling us to identify the first-order derivative
corrections for energy relaxation (see equation (4.37)). We then computed the thermo-electric
conductivities of our system in the case where Onsager reciprocity is not imposed.

One of the main results of this work is the finding that, for a system with a large
momentum relaxation rate where a quasi-hydrodynamic description still applies, the thermo-
electric conductivities assume a Drude form when we impose positivity of entropy production
and Onsager reciprocity. Specifically, we find that the contribution from the incoherent
conductivity to the electric conductivity disappears.

Typically, the DC conductivity of a material is determined by placing the material
on a suitable heat sink and passing a current through it. Once the system settles into a
time independent state then one measures the current compared to the applied electric field
and obtains the resistance/conductivity. Our work casts serious doubts on whether such
measurements can be used to determine incoherent conductivities for situations where we
expect hydrodynamics to be a relevant description. Indeed, in work by some of the authors [27],
it now seems likely that the part of the DC conductivity attributed to the incoherent term
σ0 would instead have to originate in some other (combination of) transport coefficients.

An important step in verifying our theory could be to simulate systems of many charged
particles that reach a steady state under the influence of a constant electric field and
dissipation, as analyzed from a purely hydrodynamic perspective in this article. Comparing
the theory with numerical experiments could also allow for a detailed investigation into the
validity of the hydrodynamic regime around steady states [27]. For example, we can explore
the independence of our conclusions from the nature of the microscopic theory by considering
interacting exotic particles (e.g. Lifshitz particles [28–30] and anyons [31–33]). However, the
simulations may not be trivial due to the significant number of particles required to achieve
a hydrodynamic regime. Finally, it would be interesting to apply the same techniques to
superconductive states along the line of what has been done microscopically in [34].

We further remark that the focus of this work has been the hydrodynamics of charged
fluids dragged by an external electric field, however one could reach similar steady states
in the presence of temperature gradients or gravitational fields. Therefore, we could find
corrections to the hydrostatic constraint ∂iT = 0 due to relaxations similarly to how the
constraint (2.12b) becomes (3.5) when momentum is relaxed. We remind the reader that
our result for the electrical conductivity (5.6a) is already very similar to certain expressions
obtained using holographic models when the momentum relaxation rate becomes large [24–26].
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A Scaling of transport coefficients with spatial velocity

For completeness we list here the various scalings of our transport coefficients with spatial
velocity that are necessary to ensure a smooth v⃗ → 0⃗ limit:

{ᾱ1,1, ᾱ3,1, ᾱ6,1, α1} = O(1),
{(ᾱ1,2 − ᾱ1,1), (ᾱ3,2 − ᾱ3,1), (ᾱ6,2 − ᾱ6,1), (α2 − α1)} = O(u2),

{β2,2, β2,4, β3,2, β3,4, β̄2,2, β̄2,4, β̄5,2, β̄5,4} = O(u2),
{(−2β2,4 − β2,2 + β2,5), (−2β3,4 − β3,2 + β3,5)} = O(u4),
{(−2β̄2,4 − β̄2,2 + β̄2,5), (−2β̄5,4 − β̄5,2 + β̄5,5)} = O(u4),

t = O(1),
(γ5 − t) = O(u2),(

2t+ γ2 −
2

d − 1 t− 4γ5 − 2γ6 + γ3

)
= O(u4),(

−γ3 +
2

d − 1 t+ γ6

)
= O(u2),(

γ3 −
2

d − 1 t
)
= O(1).
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