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In hydrodynamics, for generic relaxations, the stress tensor and Uð1Þ charge current two-point functions
are not time-reversal covariant. This remains true even if the Martin-Kadanoff procedure happens to yield
Onsager reciprocal correlators. We consider linearized relativistic hydrodynamics on Minkowski space in
the presence of energy, Uð1Þ charge, and momentum relaxation. We then show how one can find the
minimal relaxed hydrodynamic framework that does yield two-point functions consistent with time-
reversal covariance. We claim the same approach naturally applies to boost agnostic hydrodynamics and its
limits (e.g., Carrollian, Galilean, and Lifshitz fluids).
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I. INTRODUCTION

When we couple a charged fluid to an external electric
field in order to compute the fluid’s optical conductivities,
we find that these conductivities diverge in the strict direct
current (DC) limit ω → 0 [1]. The origin of this divergence
traces back to the existence of a conserved momentum
operator, which implies that a constant electric field (or
temperature gradient) adds momentum to the fluid without
bound. The standard approach to solve this problem is the
introduction of a small relaxation parameter τ−1p which
breaks translation invariance and relaxes the total momen-
tum. While momentum is no longer conserved, it can still
be a relevant hydrodynamic charge if τp is large enough [1]
(for some holographic examples see [2–6]).
In the presence of a Uð1Þ axial anomaly, momentum

relaxation is not enough to obtain finite DC conductivities.
In this case one must also relax energy and Uð1Þ charge
conservation [7–10]. The inclusion of these relaxation
terms is natural, in the sense that energy relaxation is a
fact of certain condensed matter processes and charge
relaxation may appear when the corresponding symmetry is
only approximate, see, e.g., [11–14] for a kinetic theory

derivation and [15] for a discussion of relaxed nondissi-
pative hydrodynamics.
At the computational level, there are two main

approaches to obtaining the response functions and their
corresponding conductivities in linearized hydrodynamics:
the variational or background field approach [16] and the
Martin-Kadanoff or canonical approach [17]. In the first the
fluid is perturbed by spacetime and gauge field fluctuations
that couple to the full stress-energy tensor and current,
respectively, while in the second sources only for the
conserved charge densities are introduced.
Because the relaxation terms explicitly break the

Lorentz symmetry of the system, the variational approach
is usually deemed impractical for computing the Green’s
functions [18] because, in general, it is impossible to write
the relaxation terms in a unique covariant form without
introducing additional fields, which one may or may not
assume to be dynamical. Examples of such fields include
a massive Goldstone field or a background vector (see,
e.g., [19,20]). On the other hand, the Martin-Kadanoff
method works well in the presence of relaxation terms, but
comes short on other aspects. In particular, (i) it does not
give access to all the Green functions, but only to those
related to the thermodynamic charges [21] and (ii) in more
general cases, e.g., when there are strong electric and
magnetic fields that polarize the fluid, it might not be
straightforward to obtain the relations between the charges
and their thermodynamic sources. For these reasons, it is of
interest to find a unique prescription to study the response
functions of fluids with weakly relaxed charges via the
variational method.
In this paper we present a prescription that allows one to

compute the two-point functions of relaxed hydrodynamics
via the background field method. Namely, we consider a
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particular example, relaxed relativistic hydrodynamics with
a Uð1Þ charge and introduce all the possible source terms
(metric and gauge field fluctuations) to the conservation
equations at order one in fluctuations and order zero in
derivatives. We find that by simply requiring time-reversal
covariance of the microscopic theory we can completely
constrain all the extra parameters we introduce. The
relaxation terms that survive this procedure exactly repro-
duce the Green’s functions obtained via the Martin-
Kadanoff approach up to contact terms.
The paper is structured as follows: in Sec. II we discuss

the general properties of constant relaxations in the Martin-
Kadanoff formalism for an example Uð1Þ charged relativ-
istic fluid and obtain a set of very general constraints based
on Onsager reciprocity, positivity of entropy production,
and linearized stability. In Sec. III we implement the same
relaxations in the variational approach and, by imposing
time-reversal covariance on the correlators, show how to
obtain consistent results between the prescriptions.

II. THE MARTIN-KADANOFF APPROACH
AND ONSAGER RECIPROCITY

In the present section, we consider the Martin-Kadanoff
procedure in the presence of the most general sources of
relaxation linear in the fluctuation fields. This approach
gives a subset of the possible two-point functions of the
stress tensor and Uð1Þ charge current. Subsequently, we
impose Onsager reciprocity on the obtained Green’s
functions alongside the second law of thermodynamics.
This naturally leads to strong constraints on the allowed
relaxation terms. Having developed this framework, in the
next section we shall explore how to make this effective
description time-reversal covariant for all the two-point
functions of the currents one can calculate in hydro-
dynamics.
Our starting point is the linearized hydrodynamic equa-

tions of motion, Fourier transformed in the spatial direc-
tions. They can generically be brought into the following
form:

∂tφaðt;kÞ þMabðkÞφbðt;kÞ ¼ 0: ð1Þ

By φa we denote the fluctuations of the conserved charges,
while Mab is the hydrodynamic matrix, whose specific
expression depends on the constitutive relations and the
equations of motion. Given Mab we can write down an
explicit formula for the retarded Green’s function GR

ab,
namely [16]

GR
abðz;kÞ ¼ −ð1þ izK−1ðz;kÞÞacχcb; ð2Þ

where we defined Kab ¼ −izδab þMabðkÞ, and χab is the
thermodynamic susceptibility matrix,

χab ¼
∂φa

∂λb
: ð3Þ

We denote by λa the sources conjugate to the charges.
In addition to any continuous symmetries, discrete

symmetries (such as time-reversal covariance) should be
imposed on the hydrodynamic effective theory if they are
present in the microscopic theory. Such discrete sym-
metries often lead to constraints on transport coefficients.
In relaxed hydrodynamics appropriate relaxations are
chosen to break the relevant continuous symmetries, but
what is not immediately obvious is whether they break the
discrete symmetries—after all, the discrete symmetries are
not part of the proper Lorentz group. Following [16],
we will assume that the relaxed microscopic theory does
preserve microscopic time-reversal covariance and thus
require

GR
abðω;kÞ ¼ ηaηbGR

baðω;−kÞ ð4Þ

of our hydrodynamic correlations functions, where ηa
is the time-reversal eigenvalue [22] for the field
φa. Enforcing time-reversal using (2), leads to the
constraint [23]

χSMTð−kÞ ¼ MðkÞχS; ð5Þ

with S ¼ diagðη1; η2;…Þ the matrix of time-reversal eigen-
values of the φs. In writing (5), we have assumed that there
are no explicit parametersB, such as the magnetic field, that
break time-reversal invariance of the microscopic theory. In
such cases one may be able to extend (5) to a relationship
between different theories where the parameter B also
transforms appropriately under time reversal. For example,
in the case of a constant magnetic field we take B → −B
under time reversal.
The above applies for general hydrodynamic theories;

now we specialize our discussion to relativistic hydrody-
namics. We consider a charged relativistic fluid at temper-
ature T and chemical potential μ propagating in Minkowski
spacetime. Its energy-momentum tensor Tμν and electric
current Jμ are given in the Landau frame by [16]

Tμν ¼ ϵuμuν þPΔμν − ηΔμαΔνβ

�
∂αuβ þ ∂βuα −

2

d
ηαβ∂λuλ

�
− ζ∂μuμ þOð∂2Þ; ð6aÞ

Jμ ¼ nuμ − σΔμνT∂ν
μ

T
þOð∂2Þ; ð6bÞ

with Δμν ¼ ημν þ uμuν, the projector normal to the velocity
profile uμ, ημν ¼ diagð−1; 1; 1…1Þ, and d the number of
spatial dimensions.
The hydrodynamic equations corresponding to Tμν, Jμ

are the energy-momentum and charge conservation
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equations, ∂μTμν ¼ 0 ¼ ∂μJμ. We linearize these equations around a state with constant energy density, number density, and
zero spatial velocity,

uμ ¼ uμð0Þ þ δuμ; ϵ ¼ ϵð0Þ þ δϵ; n ¼ nð0Þ þ δn; ð7Þ

with uμð0Þ ¼ ð−1; 0;…; 0Þ in a Cartesian coordinate system. Subsequently, we add relaxation terms [24] that are linear in the
charge fluctuations to find

∂tδϵþ ðϵð0Þ þ Pð0ÞÞ∂iδvi ¼ −
�

1

τϵϵ
δϵþ 1

τϵn
δn

�
; ð8aÞ

∂tδnþ nð0Þ∂iδvi − σTð0Þ∂2i

�
δ
μ

T

�
¼ −

�
1

τnϵ
δϵþ 1

τnn
δn

�
; ð8bÞ

∂tδpi þ ∂
iδP − η

�
∂
2
jδv

i þ 1

3
∂
i
∂jδvj

�
− ζ∂i∂jδvj ¼ −

1

τp
δpi; ð8cÞ

with δpi ¼ ðϵð0Þ þ Pð0ÞÞδvi. These equations (8) corre-
spond to the (non)conservation of energy, charge, and
momentum, respectively. The energy and charge relaxation
terms are defined intuitively in terms of their corresponding
relaxation times. In particular, τp is the momentum relax-
ation time, while τϵϵ and τnn are the energy and charge
relaxations times. The terms τnϵ, τϵn are mixed relaxations,
which as written do not have the units of time, and one can
find an example of such terms in [9]. We could also
consider generalizing momentum relaxation to mix differ-
ent momentum components, however, this type of relax-
ation can always be reduced to the one found in (8) (see
Sec. 2.4 of [15]). Thus, we have added to the right-hand
sides of (8), all possible relaxation terms linear in fluctua-
tions and without explicit derivatives. Subsequently, we
take the relaxations times to be small (τ large) by which we
mean, in the linearized regime, that τ−1 ∼Oð∂Þ. Finally,
we note that the displayed expressions (8) are agnostic on
the specific relaxation scenario, therefore, they are quite
general and can capture many different situations.
Before we discuss in detail the constraints on relaxation

stemming from time reversal and the second law, we note
that a heuristic thermodynamic argument already suggests

the existence of such constraints. Following [7], consider a
scattering event between the fluid microscopic constituents
and some impurities/defects that relax the energy (or
charge). Because of the scatterings, the fluid loses δϵ
energy in a time τϵϵ. However, this implies that it also
loses charge δn ¼ ∂n

∂ϵ δϵ ¼ δϵ
μð0Þ

in the same time interval. An

analogous argument tells us that if the fluid loses δn charge,
then it also loses δϵ ¼ μð0Þδn energy. Hence we see that, in
general, energy and charge relaxations are strongly inter-
twined, and we can already put forward the ansatz

μð0Þ
τnn

¼ 1

τϵn
;

1

τϵϵ
¼ μð0Þ

τnϵ
: ð9Þ

We confirm this holds generically for relaxed theories that
preserve positivity of entropy production shortly.
We impose the Onsager relations to hydrodynamics by

requiring (5) on the equations of motion (8). Taking
φaðt;kÞ ¼ ðδϵ; δn; δpiÞ and considering, without loss of
generality, k ¼ ðkx; 0; 0Þ we determine the matrix Mab of
(1) to be

M ¼

0
BBBBBBBBBB@

1
τϵϵ

1
τϵn

ikx 0 0

k2xσβϵ þ 1
τnϵ

k2xσβn þ 1
τnn

ikxnð0Þ
Pð0Þþϵð0Þ

0 0

ikx
∂P
∂ϵ ikx

∂P
∂n

k2xð3ζþ4ηÞ
3ðPð0Þþϵð0ÞÞ þ 1

τp
0 0

0 0 0 k2xη
Pð0Þþϵð0Þ

þ 1
τm

0

0 0 0 0 k2xη
Pð0Þþϵð0Þ

þ 1
τm

1
CCCCCCCCCCA
; ð10Þ
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where we defined βϵ ¼ ∂μ
∂ϵ −

μð0Þ
Tð0Þ

∂T
∂ϵ, βn ¼ ∂μ

∂n −
μð0Þ
Tð0Þ

∂T
∂n,

and the matrix of the time-reversal eigenvalue is
S ¼ diagð1; 1;−1;−1;−1Þ. We find

χϵϵ
τnϵ

−
χϵn
τϵϵ

þ χnϵ
τnn

−
χnn
τϵn

¼ 0; ð11Þ

where the susceptibilities are

χnϵ ¼ χϵn ¼
∂ϵ

∂μ
¼ Tð0Þ

∂n
∂T

þ μð0Þ
∂n
∂μ

; χnn ¼
∂n
∂μ

;

χϵϵ ¼ Tð0Þ
∂ϵ

∂T
þ μð0Þ

∂ϵ

∂μ
: ð12Þ

The thermodynamic derivatives are taken in the grand
canonical ensemble, at fixed μ or T, respectively. We can
see then that if we set τ−1nϵ ¼ τ−1ϵn ¼ 0 leaving only the pure
charge and energy relaxations typically encountered in the
literature, then we must impose τϵϵ ¼ τnn. This relation is
known [8], but we shall now see that this truncated relaxation
is at odds with the second law of thermodynamics.
The linearized entropy current is given by

δsμ ¼ δsμcan þ δsμeq; ð13aÞ

sμcan ¼ 1

T
ðPuμ þ Tμνuν − μJμÞ; ð13bÞ

where sμeq is present to ensure that the hydrodynamic
equations vanish upon imposition of hydrostaticity and
is zero at the relevant order in our current situation. It is
then not difficult to show that the divergence of this current
takes the form

Tð0Þ∂μδsμ ¼ δϵ

�
μð0Þ
τnϵ

−
1

τϵϵ

�
þ δn

�
μð0Þ
τnn

−
1

τϵn

�
þOðδ2; ∂2Þ:

ð14Þ
Positivity of entropy production requires that the diver-
gence of the entropy current be positive definite on any

(including the linearized) solution of the hydrodynamic
equations of motion. As each of the fluctuations δϵ and δn
in (14) are of arbitrary sign, it follows that their coefficients
must be zero [25]. This gives two constraints on the
relaxation rates, and hence we obtain (9), confirming that
the relaxations of energy and charge are connected for
thermodynamic reasons. Subsequently, with these con-
straints between the relaxation rates due to the second
law, we can use (11) to find

∂ϵ

∂T
1

τϵϵ
þ ∂n
∂T

μð0Þ
τnn

¼ 0: ð15Þ

This leaves a one parameter family of relaxations, which
we can parametrize by τnn. Notice that, in general, and this
will be confirmed by the study of the modes, not all
relaxation times must be positive.
Equations (14) and (15) fix all but one of the relaxation

terms giving us a one-parameter family that, at least
at the linearized level, satisfy positivity of entropy
production and Onsager reciprocity. Importantly, we
can see that, unless the chemical potential is zero, we
will find τϵn ≠ 0 whenever τnn ≠ 0, if we want these
properties to hold. Alternatively, one can have more
generic relaxation rates if the second law is ignored. In
this case, the relaxation rates represent the coupling
of a fluid to an open system, rather than some UV
degrees of freedom in a more complete quantum theory
with a quasihydrodynamic limit (see, e.g., the discussion
in [26–29]).
In (14) we examined the entropy positivity condition at

lowest order in fluctuations. However, when considering
linearized hydrodynamics, constraints on transport coef-
ficients can be inferred only by examining the second
law at order two in fluctuations. In our case, at order two
in fluctuations, the divergence of the entropy current is
given by

Tð0Þ∂μδsμ ¼
δϵδT
Tð0Þτϵϵ

þ δnδT
Tð0Þτϵn

þ δμδn
τnn

þ δμδϵ

τnϵ
− μð0Þ

δTδn
Tð0Þτnn

− μð0Þ
δTδϵ
Tð0Þτnϵ

þ 1

τp
ðϵð0Þ þ Pð0ÞÞδv2 þ σ

�
μð0Þ
Tð0Þ

∂δT − ∂δμ

�
2

þ ηðδσijÞ2 þ ζð∂iδviÞ2 þOðδ3; ∂3Þ: ð16Þ

Positivity of the rhs gives the usual constraints on the transport coefficients σ ≥ 0, η ≥ 0, and ζ ≥ 0. Furthermore, we also
find τp ≥ 0 as expected for momentum relaxation. We can rewrite the remaining relaxations in terms of fluctuations of just
T and μ to find

Tð0Þ∂μδsμ ¼ δμδT
�
∂ϵ

∂μ

1

Tð0Þτϵϵ
þ ∂n
∂μ

1

Tð0Þτϵn
þ ∂n
∂T

1

τnn
þ ∂ϵ

∂T
1

τnϵ
−
μð0Þ
Tð0Þ

∂n
∂μ

1

τnn
−
μð0Þ
Tð0Þ

∂ϵ

∂μ

1

τnϵ

�

þ δT2

Tð0Þ

�
∂ϵ

∂T
1

τϵϵ
þ ∂n
∂T

1

τϵn
−
∂n
∂T

μð0Þ
τnn

−
∂ϵ

∂T

μð0Þ
τnϵ

�
þ δμ2

�
∂n
∂μ

1

τnn
þ ∂ϵ

∂μ

1

τnϵ

�
þ…; ð17Þ
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where the dots are the standard dissipative terms. Using the
constraints (9), and the results of (15), we can simplify the
above expression (17) to

Tð0Þ∂μδsμ ¼ δμ2
�
∂n
∂μ

1

τnn
þ ∂ϵ

∂μ

1

τnϵ

�
þ…: ð18Þ

The remnant nonzero term can be written in terms of the
susceptibilities as

δμ2

τnn
ðχϵϵχnn − χ2ϵnÞ ≶ 0; ð19Þ

where the sign of the inequality depends on the sign of ∂ϵ
∂T.

Because the susceptibility matrix is positive definite, the
bracket is also positive. Hence when ∂ϵ

∂T ≥ 0 then τnn ≥ 0,
while if ∂ϵ

∂T < 0, then τnn < 0. Importantly, this condition is
not an extra equality-type constraint on τnn, meaning it is
not a fixed parameter in our hydrodynamic model [30].
Notice that for bulk condensed matter systems the specific
heat ∂ϵ

∂T is generically expected to be positive.
A final, not necessarily independent, constraint on the

relaxation time arises from requiring the linear stability of
the modes. In dþ 1 dimensions there are dþ 2 modes,
which at zero-wave vector [31] are

ω ¼ −
i
τp

;

ω ¼ −
i
2

�
1

τϵϵ
þ 1

τnn

�
� i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

τϵϵ
−

1

τnn

�
2

þ 4

τnϵτϵn

s
; ð20Þ

where the first mode has multiplicity d. The stability of the
state then requires that the imaginary part of these modes be
negative. Thus the first mode simply gives us the same
constraint, τp ≥ 0, imposed by enforcing the second law. If
we liberate ourselves from the second law, but maintain
Onsager reciprocity, we have three free parameters and can
readily arrange for propagating and/or unstable modes from
the second expression (20). On the other hand, employing
all our constraints, we find that the second set of modes
in (20) saturate the linearized stability requirement, i.e.,

ω ¼ 0; ω ¼ −i
�

1

τnn
þ 1

τϵϵ

�
¼ −

i
τnn

�
∂ϵ
∂T − μð0Þ ∂n∂T

∂ϵ
∂T

�
:

ð21Þ

The second expression above gives another constraint on
the sign of τnn that depends on the thermodynamics, similar
to what happens in (19).
While we have determined the one parameter family of

relaxations leading to a linearized hydrodynamics respect-
ing Onsager reciprocity and the second law, we should
remind ourselves that hydrodynamics is not just a

linearized theory. While a full investigation of nonlinear
corrections is beyond the scope of this paper, it is a
reasonable question to ask whether our one-parameter
linearized expressions can come from a nonlinear formu-
lation. This boils down to a question of integrability in
thermodynamics. To investigate it, let us change basis for
our relaxations so that

1

τϵϵ
δϵþ 1

τϵn
δn ¼ 1

τϵT
δT þ 1

τϵμ
δμ;

1

τnϵ
δϵþ 1

τnn
δn ¼ 1

τnT
δT þ 1

τnμ
δμ: ð22Þ

Imposing our Onsager reciprocity constraint and the second
law on our relaxation terms, we find

1

τϵT
¼ 0;

1

τnT
¼ 0; τϵμ ¼

τnn
μð0Þ

∂ϵ
∂T

∂n
∂μ

∂ϵ
∂T −

∂n
∂T

∂ϵ
∂μ

;

τnμ ¼
τnn

∂ϵ
∂T

∂n
∂μ

∂ϵ
∂T −

∂n
∂T

∂ϵ
∂μ

: ð23Þ

Suppose there exists a pair of differentiable functions Γϵ

and Γn at the nonlinear level whose linearizations lead to
our relaxation terms,

δΓϵ ¼
∂Γϵ

∂μ
δμþ ∂Γϵ

∂μ
δT ¼ 1

τϵμ
δμþ 1

τϵT
δT; ð24aÞ

δΓn ¼
∂Γn

∂μ
δμþ ∂Γn

∂μ
δT ¼ 1

τnμ
δμþ 1

τnT
δT: ð24bÞ

It follows that our linearized relaxations are required to
satisfy the integrability conditions,

∂

∂T

�
1

τϵμ

�
¼ ∂

∂μ

�
1

τϵT

�
;

∂

∂T

�
1

τnμ

�
¼ ∂

∂μ

�
1

τnT

�
; ð25Þ

which come from commutativity of second derivatives on
Γϵ and Γn [32]. From (23) we see that

∂

∂μ

�
1

τϵT

�
¼ 0;

∂

∂μ

�
1

τnT

�
¼ 0; ð26Þ

and plugging this result into (25), we find τϵμ and τnμ are
independent of T. Therefore, the most general τnn com-
patible with the existence of Γϵ and Γn are

1

τnnðT; μÞ
¼ fðμÞ ∂ϵ

∂T
∂n
∂μ

∂ϵ
∂T −

∂n
∂T

∂ϵ
∂μ

; ð27Þ

for f an arbitrary function of μ, while all other relaxations
are fixed by our constraints. We repeat that this final result
is a consequence of Onsager reciprocity, positivity of
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entropy production, and the existence of a nonlinear lift
of the linearized quasihydrodynamic model. Sacrificing
even one of the requirements leads to a much more general
result.
To conclude this section, we comment that the fluid with

relaxations described above is quite different from the one
presented in [15]. There we considered a complete (non-
linear) theory of hydrodynamics, in the hydrostatic regime,
while the relaxations considered here are defined to be
out-of-equilibrium quantities. Moreover, the constraint
obtained in [15] between energy Γϵ and momentum
relaxation Γp, i.e.,

Γϵ ¼ Γppivi; ð28Þ

ensures that at linear order in small velocity, energy is still
conserved and only momentum decays with the usual
constraint τ−1p ¼ Γp ≥ 0.

III. THE BACKGROUND FIELD METHOD
AND TIME-REVERSAL COVARIANCE

In the previous section, we saw how imposing Onsager
reciprocity on the correlators between conserved charges

constrains the possible form of charge relaxation for an
example charged relativistic fluid. In the present section,
we explore whether additional constraints appear when we
extend time-reversal covariance to the correlators between
the full current and energy-momentum tensor.
To evaluate the complete correlators, we use the

background field approach. In the background field
approach, one places the fluid on a curved background
gμν with a generic gauge field Aμ and defines the expect-
ation values

J μðxÞ ¼ ffiffiffiffiffiffi
−g

p hJμðxÞiA;g; T μνðxÞ ¼ ffiffiffiffiffiffi
−g

p hTμνðxÞiA;g:
ð29Þ

On the rhs of each equality, the expectation values of Jμ and
Tμν in the presence of Aμ and gμν are given by the on-shell
values of Jμ and Tμν. This point of view allows us to define
the retarded correlators of the stress tensor and current via
varying with respect to the sources Aμ and gμν and then
taking the flat space limit [16], i.e.,

hJμJνiRðxÞ ¼ −
δJ μðxÞ
δAνð0Þ

����
g¼η;A¼0

; hTμνJρiRðxÞ ¼ −
δT μνðxÞ
δAρð0Þ

����
g¼η;A¼0

; ð30aÞ

hJμTνρiRðxÞ ¼ −2
δJ μðxÞ
δgνρð0Þ

����
g¼η;A¼0

; hTμνTρσiRðxÞ ¼ −2
δT μνðxÞ
δgρσð0Þ

����
g¼η;A¼0

: ð30bÞ

We see that by solving the linearized hydrodynamic equations for the evolution of the hydrodynamic fields, in terms of the
external sources, this method gives direct access to all the correlators of the stress tensor and charge current.
We consider now the same theory of linearized hydrodynamics discussed in the previous section, but this time placed on a

curved background. The nonlinear Landau-frame constitutive relations are, up to order one in derivatives,

Tμν ¼ ϵuμuν þ PΔμν − ηΔμαΔνβ

�
∇αuβ þ∇βuα −

2

d
gαβ∇λuλ

�
− ζ∇μuμ þOð∇2Þ; ð31aÞ

Jμ ¼ nuμ þ σΔμν

�
Eν − T∇ν

μ

T

�
þOð∇2Þ; ð31bÞ

where Δμν ¼ gμν þ uμuν is the projector transverse to the
velocity and Eμ ¼ Fμνuν the electric field.
The equations of motion corresponding to these con-

stitutive relations are simply the standard conservation
equations of energy, momentum, and charge in the presence
of curved metric and gauge fields, which we now need to
supplement with relaxation terms. This is a nontrivial
problem at the nonlinear level, since—even if one writes
relaxations in terms of Lorentz covariant objects, such as
uμJμ=τ for the charge relaxation (see, e.g., [7]) or the
momentum relaxation terms in [20]—relaxation terms, in

general, break Lorentz covariance. Hence there are many
ways to introduce relaxation terms at the nonlinear level
which lead to the same linearized expressions (8), and non-
Lorentz-covariant nonlinear expressions cannot be written
down uniquely, in general. We can, however, write relax-
ation terms in a covariant-looking form by introducing
external vectors into the theory to contract the appropriate
indices. For example, we can introduce a fixed timelike
vector which picks out the frame in which the charges
obtain their stationary values. By choosing this vector to be
dual to the clock form τμ ¼ ð1; 0⃗Þ as in [33–37], we pick
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out the lab frame as the frame where the charges become
stationary and can write, e.g., the charge relaxation term
Jt=τ ¼ τμJμ=τ in a covariant-looking way [38]. With this
construction it is possible to covariantize the relaxation
terms in a weak sense, but Lorentz covariance is still lost.
To make the above point clearer, we write here a possible

representative set of relaxation terms which reduce to (8)

when linearizing around flat spacetime. Notice that while
τμðxÞ is coordinate covariant, in Cartesian coordinates in
(dþ 1)-dimensional Minkowski space we can choose for it

to be τμ ¼ ð−1; 0⃗Þ. Consequently, ∇ð0Þ
μ τμ ¼ 0 in all coor-

dinate systems parametrizing Minkowski space. Given
this, one possible way to write the nonlinear equations of
motion is

∇μTμν ¼ FνλJλ þ
1

τϵn
τνðJ · τÞ − 1

τϵϵ
τνðTαβτατβÞ þ

1

τm
ðgνα þ τνταÞTαβτ

β; ð32aÞ

∇μJμ ¼
1

τnn
Jμτμ −

1

τnϵ
Tμντντμ: ð32bÞ

In the above expressions one can replace any τμ with a uμ.
These various choices of nonlinear extensions represent a
space of distinct theories as can be readily argued by
considering the value of the relaxation terms when the fluid
is moving with some spatial velocity. Nevertheless, they
lead to the same linearized hydrodynamics around a zero
spatial velocity background.

With the above discussion in mind, to avoid the
issue of nonlinear extensions entirely, we linearize the
equations of motion corresponding to (31) around an
equilibrium configuration with constant temperature, con-
stant chemical potential, zero fluid velocity, and flat
spacetime,

T ¼ Tð0Þ þ δT; μ ¼ μð0Þ þ δμ; uμ ¼ τμ þ δvμ; ð33aÞ

gμν ¼ ημν þ δhμν; Aμ ¼ δAμ: ð33bÞ

Eventually, the (linearized) equations of motion read

τμ∂μδϵþ ðϵð0Þ þ Pð0ÞÞ∇ð0Þ
μ δvμ ¼ −

�
1

τϵϵ
δϵþ 1

τϵn
δn

�
; ð34aÞ

τμ∂μδnþ nð0Þ∇ð0Þ
μ δvμ − σ

�
Pμν∇ð0Þ

μ ∂νδμ −
μð0Þ
Tð0Þ

Pμν∇ð0Þ
μ ∂νδT −∇ð0Þ

μ δEμ

�
¼ −

�
1

τnϵ
δϵþ 1

τnn
δn

�
; ð34bÞ

Pμν
∂νδP − ζPμν∇ð0Þ

ν ∇ð0Þ
ρ δvρ þ ðϵð0Þ þ Pð0ÞÞPμ

ρðτν∇ð0Þ
ν δvρÞ − 2ηPμρ∇ð0Þ

σ δσσρ ¼ −
1

τp
ðϵð0Þ þ Pð0ÞÞδvμ þ nð0ÞδEμ

− Pð0ÞPμ
ν∇ð0Þ

ρ δhρν − ðϵð0Þ þ Pð0ÞÞ
× Pμ

ρτ
νδΓρ

νστσ; ð34cÞ

where Pμν ¼ ημν þ τμτν is the projector transverse to the

background velocity and ∇ð0Þ
μ the background connection

defined in terms of the Christoffel symbols Γρ
νσ . Note that

we have explicitly ignored any term proportional to a
product of a relaxation time and a gauge or metric
fluctuation. The reason for doing so is that distinct non-
linear formulations can lead to different terms of this kind.
For example, the nonlinear extension displayed in (32)
leads to

energy −
δn
τϵn

−
δϵ

τϵϵ
−
1

2
δhtt

�
nð0Þ
τϵn

þ ϵð0Þ
τϵϵ

�
; ð35aÞ

momentum −
ϵð0Þ þ Pð0Þ

τp
δvi; ð35bÞ

charge −
δn
τnn

−
δϵ

τnϵ
; ð35cÞ
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where the final term in (35a) is absent from (34). In
addition, replacing some of the τμ in (32) with uμ leads to
different source terms in our linearized hydrodynamic
equations. We argue below that this is not an issue, as
enforcing Onsager reciprocity requires us to modify these
terms by hand anyway [see Eq. (37)]. Hence, we may take
(34) as our base case without loss of generality. Finally, we
emphasize that the equations (34) are made explicitly

coordinate invariant by the use of ∇ð0Þ
μ instead of ∂μ for

the background covariant derivative, which accounts for the
existence of nonlinearized connections on a flat back-
ground in a curvilinear coordinate system.
Given the above setup, it is not difficult to show that

there are correlators derived from (34) which do not satisfy
the time-reversal covariance condition (4). For example,

hTttTxxi − hTxxTttijk¼0 ¼ −
ððϵð0Þ þ Pð0ÞÞðτnϵτϵn − τnnτϵϵÞÞ þ iτnnτnϵððϵð0Þ þ Pð0ÞÞτϵn þ nð0ÞτϵϵÞω

τnnτϵϵ þ τnϵτϵnðiþ τnnωÞðiþ τϵϵωÞ
: ð36Þ

This remains the case, even when we identify the energy
and charge relaxation terms with those preserving the
Onsager relations (and the second law) in the Martin-
Kadanoff approach, (11). In addition, the correlators are
generically different from the ones obtained in the previous
section [39].
If we want the correlators to be time-reversal covariant,

then we must modify some aspect of our hydrodynamic
formulation. We choose to modify the hydrodynamic
equations, by including additional source terms in the
hydrodynamic equations that vanish when the metric and
gauge field take their background values. That is, we
include additional sources to the hydrodynamic equations
depending nontrivially on the differences δðgμν − ημνÞ and
δðAμ − Að0Þ

μ Þ. The relaxations can then be understood as
explicitly breaking the background independence of the
theory, which manifests in a preferred metric and gauge
field. This is not to say that one cannot place this relaxed
hydrodynamics on a curved background, only that the
equation of motion depends explicitly on the background
metric. It is also important to reiterate that the resultant
theory is coordinate invariant, even if it is not background
independent.
To employ our method, we proceed by brute force and

compute the correlators with arbitrary additional source
terms constructed from δhμν and δAμ. In particular, we
schematically write [40]

ðsources of ð34ÞÞ→ ðsources of ð34ÞÞ þ cαμνδhμν þ rαμδAμ

ð37Þ

and compute the two point functions using these modified
equations of motion via the variational approach. In the
above expression α ¼ fϵ; n; x; y; zg identifies the relevant
equation of motion. Imposing time-reversal covariance on
these Green’s functions gives us a set of relations that must
be solved for the arbitrary coefficients in (37). We do this
for the full correlator obtained from the background field
method, rather than the truncated correlator (where one
accounts for and excises any spurious higher derivative

terms). Consequently, our complete correlators respect
time-reversal covariance.
There are in total 70 source terms that we can add,

however, since there are no parity-breaking operators in the
theory, cαμν, rαμ are parity even and this allows us to use
rotational invariance and parity with respect to a single axis
(which itself is a consequence of parity and rotational
invariance) Pi∶ i → −i (i ¼ x, y, z) to reduce the number
of sources to only 13. Because τp has the same value in all
the directions, we also make the ansatz that the sources are
isotropic, which reduces their number down to 9. Finally,
after imposing time-reversal covariance [41] on the full
correlators we end up with only 4 new source terms, while
all the other coefficients are found to be zero. The only
equations of motion that receive corrections are those for
energy and charge, i.e.,

energy∶ −
�

1

τϵϵ
δϵþ 1

τϵn
δn

�
− cϵttδhtt − rϵtδAt; ð38aÞ

charge∶ −
�

1

τnϵ
δϵþ 1

τnn
δn

�
− cnttδhtt − rntδAt; ð38bÞ

where the value of the coefficients is fixed in terms of the
standard relaxations,

cϵtt ¼
1

2

�
χϵn
τϵn

þ χϵϵ
τϵϵ

�
; ð39aÞ

rϵt ¼
χϵϵ
τnϵ

þ χϵn
τnn

¼ 2cntt; ð39bÞ

cntt ¼
1

2

�
χϵϵ
τnϵ

þ χϵn
τnn

�
; ð39cÞ

rnt ¼
χϵn
τnϵ

þ χnn
τnn

: ð39dÞ

There are no additional constraints on the relaxation time
parameters τ beyond those imposed in the Martin-Kadanoff
procedure (11). Hence we have confirmed that (i) relaxed
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hydrodynamics can be made time-reversal covariant and
(ii) that the correlators obtained by the variational pro-
cedure including the c’s and r’s agree with those obtained
by the Martin-Kadanoff one, up to the usual contact terms
[42]. As the same exact procedure presented above can be
applied to a perfect fluid, leading to the same results (39),
our expressions are hydrodynamic frame covariant as one
would expect of a physically meaningful theory.
Because we are interested in the set of all correlators

of the theory, knowing the linearized expressions for a
specific background is as good as knowing the full theory,
this is why our starting point was (34). Clearly, picking a
different background (curved manifold, background gauge
fields, nonzero spatial velocity,…), or working with a
specific nonlinear form for the relaxation rates (e.g.,
uμJμ=τ compared to Jt=τ) will change the values of the
coefficients c and r in (39). Nevertheless, we expect the
procedure we suggest (add all possible source terms and
impose Onsager relations) to hold for all different
backgrounds.
Finally, one can reconsider positivity of entropy pro-

duction at linear order in fluctuations in light of our new
metric and gauge field fluctuation terms. On a weakly
curved background the equivalent expression to (14) is

Tð0Þ∇ð0Þ
μ δsμ ¼ δϵ

�
μð0Þ
τnϵ

−
1

τϵϵ

�
þ δn

�
μð0Þ
τnn

−
1

τϵn

�
; ð40Þ

− ðrϵt − μð0ÞrntÞτμδAμ − ðcϵtt − μð0ÞcnttÞ
× τμδgμντν þOðδ2; ∂2Þ: ð41Þ

As we have not added second order in fluctuation addi-
tional terms, this is the only expression we need to
consider. Somewhat miraculously, imposing the entropy
positivity conditions we found in Sec. II, (15) and (9), also
happens to set the new terms to zero. Thus, our inclusion of
background-dependent terms to the energy and charge
conservation equations does not violate the second law to
order one in fluctuations.

IV. DISCUSSION

In this paper we have analyzed the implications of
time-reversal covariance of the microscopic theory, i.e.,
Onsager-Casimir relations, on a theory of linearized rela-
tivistic hydrodynamics in the presence of generic relaxa-
tions. We found a set of constraints that the relaxation
parameters must obey in order for the fluid to satisfy
Onsager relations (11), positivity of entropy production (9),
and linearized stability (20), which reduce the number of
free relaxation parameters to only one.
Subsequently, we have computed all the retarded two-

point functions for such a fluid by considering small
perturbations of the metric and gauge field: we found that,

in general, this method gives Green’s functions that are not
time-reversal covariant and do not match with the ones
obtained by linear response theory. One of the core results
of this work is to show that it is possible to overcome these
problems by considering extra source terms in the equa-
tions of motion and, surprisingly, the coefficients of these
source terms are completely fixed by the simple require-
ment of time-reversal covariance, leading to the final
result (39).
Although we tested this procedure only on a relativistic

fluid with a Uð1Þ symmetry, which is the simplest one to
couple to curved spacetime, we expect the same method to
also work for other hydrodynamic theories with different
spacetime and internal symmetries. All the more so as our
constraints can be derived at the ideal level. Furthermore,
this approach should work also for nontrivial equilibrium
backgrounds, e.g., a constant magnetic field, a curved
spacetime, or in the presence of topological terms such as
Chern-Simon’s terms [44,45]. To check the validity of this
claim could be the goal of succeeding works, and it would
be quite interesting to find a situation where time-reversal
covariance and positivity of entropy production are not
sufficient to fix the extra variational terms.
Regarding future perspectives, it would be interesting to

study how these relaxations can be consistently included in
the quasihydrodynamic description beyond the linearized
regime. In particular, the presence of relaxation terms in
the equations of motion could induce new transport
coefficients in the constitutive relations or modify the
values of known ones. One could also consider hydro-
dynamic N-point functions and ascertain whether time-
reversal covariance is sufficient to fix higher order in
fluctuation terms in the effective hydrodynamic equations.
It is also possible, with the findings of this work, to

reanalyze certain known results related to the transport
properties of anomalous hydrodynamics, e.g., in the
context of studying the thermoelectric properties of Weyl
semimetals. Specifically, as already mentioned in the
Introduction, generic relaxations are needed to obtain finite
DC conductivities for an anomalous fluid [7–9], hence it
would be fruitful to apply the methods developed here to
study the DC limit of the conductivities presented in [46].
Finally, it could be interesting to study models of relaxed

hydrodynamics in the context of kinetic theory [12], holo-
graphy [10], or using the Schwinger-Keldysh effective field
theory (EFT) formalism [47]. Because these approaches
often impose different constraints on the EFT compared to
this work [48], they could give insight in order to check the
universality of our results and how they are realized in
different contexts.
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