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Thermodynamic constraints and exact scaling exponents of flocking matter
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We use advances in the formalism of boost agnostic passive fluids to constrain transport in polar active fluids,
which are subsequently described by the Toner-Tu equations. Acknowledging that the system fundamentally
breaks boost symmetry, we compel what were previously entirely phenomenological parameters in the Toner-Tu
model to satisfy precise relationships among themselves. Consequently, we propose a thermodynamic argument
to determine the scalings of the transport coefficients under dynamical renormalization group flow given that the
scaling of the noise correlator is exact, as has been supported numerically. These scalings perfectly agree with
the results of recent state-of-the-art numerical simulation and experiments.
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I. INTRODUCTION

Classical thermodynamics is the only physical theory of
universal content that within the framework of applicability
of its basic concepts will never be overthrown. Every chal-
lenger to the supremacy of this framework has fallen before
it; whether they be black holes or, as we argue using ad-
vances in the theory of boost agnostic fluids, polar active
systems.

Active systems are often touted as out-of-equilibrium
physics, where conventional equilibrium thermodynamic
principles are expected to fall short [1]. These systems consist
of self-propelled units, or active particles, that convert stored
or ambient energy into directional movement. The interactions
between active particles and their environment lead to highly
coordinated collective motion and mechanical stresses. The
continuous energy exchange with the surroundings and the
intrinsic activity of the fluid’s components drive these systems
out of equilibrium, giving rise to unique behaviors such as pat-
tern formation, nonequilibrium phase transitions, and novel
mechanical responses. These phenomena are prevalent in a
wide array of systems ranging from bacteria to liquid crystals.

More specifically, a prominent role in this field is played by
polar active systems, which are composed of self-propelled
particles that align their movement with their closest neigh-
bors. These systems demonstrate collective behaviors such as
flocking and dynamic pattern formation, providing valuable
insights into biological phenomena and serving as a frame-
work for understanding complex systems.

Among the various theoretical approaches aimed at de-
scribing these systems, special attention is given to the model
first proposed in [2–5]. There, Toner and Tu put forward a
phenomenological description of flocking behavior, drawing
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inspiration from the equations governing liquid crystals. They
formulate a set of equations for a dynamic velocity field �v
and a conserved number density n, resembling the Navier-
Stokes equation for passive fluids. The system’s preferred
background velocity is attained by coupling these equations to
an external potential U for the velocity field, akin to the
well-known Mexican Hat potential, which causes the system
to undergo a spontaneous breaking of the rotational symmetry.

Unfortunately, despite the considerable success of the
Toner-Tu model in elucidating the large-scale dynamics of
polar active systems, the model itself lacks a clear microscopic
derivation. This is a gap only partially addressed by kinetic
theory derivations [6–10], which, however, always rely on
Galilean invariance in the form of Ward identities, as we shall
discuss.

Returning to the Toner-Tu model itself, we remind the
reader that the essence of any effective description is con-
tained in identifying the relevant effective variables (n and
�v) and symmetries. In particular, we assume the system has
translation invariance, which is only broken by the presence
of the external potential U , but lacks a boost symmetry. Then,
each velocity must be treated as a distinct configuration of the
system, as opposed to Galilean or Lorentzian models where
boosts relate systems at different velocities.

The formalism for describing fluids without boost invari-
ance is “boost agnostic hydrodynamics” [11,12]. For such
fluids, the velocity appears as a variable in the global thermo-
dynamic description of the system—just like the temperature
and chemical potential. The boost agnostic formalism, as
per the name, does not discern between the mechanisms that
lead to the velocity being necessary to specify equilibrium.
Subsequently, we can add a constraint force, represented by
U , directly to our equations of motion to pick among the
space of distinct velocities. As is typical in mechanics, such a
constraint force has no consequences for the mechanical be-
havior of the system, which in our case is the thermodynamic
dependence of the transport coefficients. More importantly,
adding such a force to the effective equations breaks
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translation invariance in a precise manner as one might
expect from a theory with nearest-neighbor interactions.

In this paper we present two results. First, we demon-
strate that polar active fluids are akin to passive fluids lacking
boost symmetry. This is opposed to some lore in the lit-
erature where the active fluid is completely divorced from
the passive analog. For hydrodynamics to offer a sensible
description [13], we must always assume that there is a
scale separation within the system, ensuring rapid local equi-
libration compared to long-scale collective dynamics. The
necessity of a local Gibbs-like distribution heavily constrains
the constitutive relations of the ideal-fluid model. Notably,
this implies that the quantity akin to pressure in the Toner-
Tu equations can be treated as a thermodynamic pressure
in many respects. Our argument centers on the requirement
that an active fluid maintains consistency with basic ther-
modynamics, particularly in its disordered phase [14]. While
tuning the symmetry-breaking potential restricts the space of
steady-state configurations and consequently affects collec-
tive dynamics and response to perturbations [2–4], it does not
alter the necessity for constitutive relations to adhere to ther-
modynamic principles. This argument is strongly supported
by recent works, suggesting that standard hydrodynamics is a
good description of systems that are in nonequilibrium steady
states [15–18].

Secondly, these constraints enable us to derive analytical
expressions for the critical exponents of the system in arbi-
trary spatial dimension d , aligning precisely with numerical
computations in the Vicsek model [19] and differing from
those derived by [3]. Our argument is grounded in the thermo-
dynamic consistency of the ideal fluid constitutive relations,
specifically the statement that at lowest order in derivatives
the fluid should not produce entropy, and in principle can be
applied to many different systems beyond the case of com-
pressible polar fluids analyzed in this work.

II. THERMODYNAMICALLY CONSISTENT
POLAR ACTIVE FLUIDS

In this and the next section we will show that it is possible
to recover all the observable features of the phenomenological
Toner and Tu model from the hydrodynamics of a simple
passive fluid.

As our starting point, consider a simple fluid without boost
symmetry. The relevant hydrodynamic variables are the chem-
ical potential μ, associated with a conserved charge n, and
the fluid velocity �v, which itself acts as a chemical potential
for the fluid momentum �g. Following [12,20] we can define
a generating functional for such fluid that produces the con-
stitutive relations for the conserved currents in terms of a
gradient expansion of the macroscopic variables. The leading
term in a small derivative expansion for the effective action
is then just the integral of a scalar, P(μ, �v2), where P is the
usual thermodynamic pressure. Variations of the background
on which the fluid sits produce the desired constitutive rela-
tions. In particular, the ideal-fluid constitutive relations take
the form [11,12,16,20]

gi = ρvi, τ i j = ρviv j + Pδi j, ji = nvi, (1a)

where �g = (∂P/∂�v)μ is the momentum conjugate to the ve-
locity, ρ = 2(∂P/∂�v2)μ is the kinetic mass density, and n =
(∂P/∂μ)v2 . In the absence of external forces, they satisfy the
following conservation equations:

∂t g
i + ∂ jτ

ji = 0, ∂t n + ∂i ji = 0. (1b)

The conservation laws of (1b) are respectively associated
with translation invariance and particle number. Notice, in
particular, that1 �j �= �g, which is a consequence of the breaking
of the Milne or Galilean Ward identity that holds only for
systems with an exact boost symmetry [21,22].

The ideal constitutive relations (1a) are the first terms in the
derivative expansion corresponding to localizing our macro-
scopic variables. The next terms in the derivative expansion,
correcting τ i j and ji in (1), lead to dissipative flows. This
order-one hydrodynamics (for fluids without boost symmetry)
has been studied in [12,20,23] and for ease of reference, we
summarize the relevant expressions in Appendix A. After
obtaining the order-one corrections, to complete the identi-
fication of our effective theory with the observed physics of
polar active fluids, we turn on nonthermal noise and the exter-
nal potential U in the normative manner. In particular, we add
them to (1b) by hand. In this regard we treat U no differently
to the noise �f in assuming that the form of the constitutive
relations are unchanged by these external forces. The result is
that �g is no longer a conserved quantity but it can nevertheless
be a relevant hydrodynamic variable if the external potential,
which breaks the symmetries, is weak enough [24,25]. In this
sense U should be understood as imposing extra constraints on
the system which reduce the allowed space of stationary states
from those permitted to the passive fluid, i.e., the stationary
state velocity will be fixed to a particular value.

Following these considerations, we state the Toner-Tu
equations:

∂t �v +λ1(�v · �∇)�v + λ2( �∇ · �v)�v + λ3 �∇|�v|2 + �∇P1

+�v(�v · �∇P2) = U �v + DB �∇( �∇ · �v)

+DT ∇2�v + D2(�v · �∇)2�v + �f , (2a)

∂t n +λn �∇ · (n�v) = 0, (2b)

where all transport coefficients above are functions of n and
�v2, U is bounded below and has a zero at some �v2, and we
assume that �f is a Gaussian white nonthermal noise

〈 fi(�x, t ) f j (�x′, t ′)〉 = �δi jδ
d (�x − �x′)δ(t − t ′) (2c)

with � some constant. As was done in the original paper [3],
we have suppressed derivatives of the particle density in (2a)
for legibility. These are easily restored and do not affect the
physics that we will be interested in. Moreover, to match the
Toner-Tu equations we have chosen the relaxation term in (2a)
to be U �v, ignoring the types of derivative corrections one can
encounter in [26]. This represents a minimal choice for the
constitutive relation of the relaxation term which must be set
externally to the problem, as was done in the original papers.

The Toner-Tu equations above (2) include λ1, λ2, λ3, and
λn as phenomenological parameters. Our ideal charge conser-

1We set the particles’ mass m = 1 without loss of generality.
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vation equation agrees with the Toner and Tu model (2) upon
setting λn = 1. At first glance, the same cannot be said about
our ideal momentum equation, which from (1a) we write as

∂t �v + �v( �∇ · �v) + (�v · �∇)�v + �∇P

ρ
+ �v

ρ
∂tρ + �v

ρ
�v · �∇ρ = 0.

(3)

Using the number conservation equation we can express the
last two terms above as

∂tρ + �v · �∇ρ = −
(

∂ρ

∂n

)
v2

n �∇ · �v+
(

∂ρ

∂�v2

)
n

(∂t �v2 + �v · �∇�v2).

(4)

Plugging this expression back into (3) and projecting the
momentum equation along �v we can solve for ∂t �v2. Finally,
substituting the solution for ∂t �v2 again into the momentum
conservation equation we arrive at the final result

∂t �v + λ1(�v · �∇)�v + λ2�v( �∇ · �v) + λ3 �∇|�v|2

+ �∇P

ρ
− k

�v
ρ2

(�v · �∇P) = 0, (5)

where the values of the parameters are

λ1 = 1, λ2 =
1 − ∂ρ

∂n
n
ρ

1 + 2 ∂ρ

∂v2
v2

ρ

, (6a)

λ3 = 0, k = 2
∂ρ

∂v2

1

1 + 2 ∂ρ

∂v2
v2

ρ

, (6b)

and the thermodynamic derivatives ∂ρ

∂�v2 and ∂ρ

∂n are to be un-
derstood at constant n or �v2, respectively. The last two terms
in Eq. (5) can be identified as the transverse and longitudinal
pressures P1 and P2:

�∇P1 = 1

ρ
�∇P, �v · �∇P2 =

2
ρ

∂ρ

∂v2

1 + 2 ∂ρ

∂v2
v2

ρ

�v · �∇P. (6c)

We see that an anisotropic pressure term is a natural conse-
quence of boost agnosticity even in equilibrium passive fluids.

Finally, we note that the coefficient λ3 can be shifted to
an arbitrary function. This happens because the pressure is a
function of �v2 and can be expanded as

�∇P

ρ
= 1

ρ

(
∂P

∂n

)
v2

�∇n + 1

ρ

(
∂P

∂�v2

)
n

�∇|�v|2, (7)

where the first term is interpreted as a new pressure gradient
�∇P̃, while the second term defines λ3 = 1

ρ
( ∂P
∂�v2 )n. This was

also the case in the original Toner-Tu model. We have made
the logical choice for its value and assume that we are supplied
with the form of the pressure P to fix any ambiguity.

Restoring the boost symmetry amounts to setting �g = n�v in
(6) as is done in some works [6–10]. This choice would force
upon us the constraint λ1 = 1 and λ2 = λ3 = 0, as can be seen
by direct substitution into (6a) and (6b). Subsequently, one
can redefine the chemical potential to remove the anisotropic
pressure and general dependence of thermodynamics on �v2.
This conclusion is independent of the precise nature of the
microscopic theory, following only from symmetries.

Interestingly, even without the imposition �g = �j, the re-
quirement of having a local Gibbs-like distribution (i.e., a
generating functional) has still heavily constrained the ideal
fluid constitutive relations. Four a priori independent phe-
nomenological parameters, λ1, λ2, λ3, and λn from the original
work [3] [see also (2)], are reduced to one (P) and its deriva-
tives. That this constraint between transport coefficients exists
even in the absence of boost invariance, when it had previ-
ously been understood to be a consequence of this symmetry,
has not been appreciated until now.

III. THE ORDERED PHASE

Only for specific flows and choices of the potential U in
(2) would we expect the system of equations to arrive at a
state with zero background velocity �v = �0 at late times. For
a �v2-dependent generic potential, bounded below by zero, the
system will flow to a zero of U and break rotations sponta-
neously. It is typical in the literature to take U = α − β�v2, so
that U �v behaves like a derivative of the Mexican Hat potential.
Around the new steady state we can then linearize in the
velocity

�v = (v0 + δv‖)x̂‖ + �v⊥ (8)

with δv‖ and �v⊥ small fluctuations which are respectively
longitudinal or orthogonal to the background velocity v0x̂‖.
v0 is defined such that it obeys U (n0, v

2
0 ) = 0, with n0 the

equilibrium particle number density.
In the ordered phase the longitudinal mode associated with

δv‖ is gapped, therefore it can be integrated out to find a set
of reduced equations for the Goldstone-like gapless mode �v⊥
and δn = n − n0. Our analysis is similar to that of [5]. In
particular, we solve the equation for δv‖ iteratively in terms
of �v⊥ and δn treating derivatives and linearization as small
in the same parameter ε. On a practical level, this amounts
to counting fluctuations and derivatives on a similar footing
O(δ) ∼ O(∂ ) ∼ O(ε), with ε a counting parameter. The equa-
tion of motion for the heavy mode δv‖, up to O(ε2), reads

(
ρ0 + 2v2

0ρv

)
∂tδv‖ + ρ0v0(2∂‖δv‖ + �∇⊥ · �v⊥)

+ (
Pn + v2

0ρn
)
∂‖δn + 2v0∂‖δv‖

(
Pv + v2

0ρv

)
+ v0ρn∂tδn = δU (v0 + δv‖) + O(ε3), (9a)

where ρ0 = ρ(n0, v
2
0 ) is the kinetic mass density computed on

the background and we have introduced the notation

(
∂F

∂n

)
v2

= Fn,

(
∂F

∂�v2

)
n

= Fv,

(
∂2F

∂n2

)
v2

= Fn2 ,

(9b)

with F = {U, P, ρ}. These thermodynamic derivatives are
evaluated on the background at n = n0 and �v2 = v2

0 too. Non-
linearities appear in (18) from fluctuations of the external
potential, which we expand as

δU =Unδn + Uv[2v0δv‖ + (δv‖)2 + |�v|2]

+ 1
2Un2 (δn)2 + O(ε3). (9c)
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We can now solve Eq. (9) iteratively for δv‖ in terms of
�v⊥ and δn. At lowest order in fluctuations and derivatives the
solution is simply given by

δv‖ ≈ −Un

Uv

δn

2v0
+ O(ε2). (10)

We can subsequently plug this approximate solution back into
the derivative and nonlinear terms in (9) and solve again for
δv‖. The solution takes the general form

δv‖ = − α1δn − α2(δn)2 − |�v⊥|2
2v0

− α3( �∇ · �v⊥)

− α4∂‖δn + O(ε3) (11)

where the coefficients are

α1 = 1

2v0

Un

Uv

, α2 = 1

8v3
0

U 2
n

U 2
v

+ Un2

4v0
, (12a)

α3 = ρnn0

2v0Uv

− ρ0

2v0Uv

− ρvn0

2v0

Un

U 2
v

− n0ρ0

4v3
0

Un

U 2
v

, (12b)

α4 = ρ0

4v2
0

Un

U 2
v

− Un

U 2
v

ρnn0

4v2
0

− Pn

2v2
0Uv2

+ Un

U 2
v

Pv

2v2
0

+ U 2
n

U 3
v

ρvn0

4v2
0

+ U 2
n

U 3
v

n0ρ0

8v4
0

. (12c)

Subsequently eliminating δv‖ from the charge conservation
equation we find, to O(ε3),

∂tδn + v2∂‖δn + n0 �∇⊥ · �v⊥ + w1 �∇⊥(�v⊥δn)

− w2∂‖(δn)2 − w3∂‖|�v⊥|2 − ξn∂‖( �∇⊥ · �v⊥)

− D‖∂2
‖ δn − D⊥∇2

⊥δn = 0, (13a)

where the precise expressions of the coefficients can be found
in Appendix B. Similarly, the equation of motion for the
transverse velocity fluctuations �v⊥ becomes

∂t �v⊥ + v0∂‖�v⊥ + κ �∇⊥δn + g1δn∂‖�v⊥ + g2�v⊥∂‖δn

+ g3 �∇⊥(δn)2 + g4�v⊥( �∇⊥ · �v⊥) + g5(�v⊥ · �∇⊥)�v⊥

− Dv �∇⊥∂‖δn − ξv �∇⊥( �∇⊥ · �v⊥)

− ξ⊥∇2
⊥�v⊥ − ξ‖∂2

‖ �v⊥ = �f⊥. (13b)

The v2 and κ terms are linear in fluctuations and deriva-
tives, the gi and wi terms are the nonlinear corrections, while
the generalized diffusivities Di and viscosities ξi are related to
first-order transport coefficients (see Appendix A).

The form of these reduced Eqs. (13a) and (13b), matches
exactly the expressions in [5], with a few minor differences.
First, we observe that we have a new nonlinear term g4, which
we believe is incorrectly missing in [5] due to some approx-
imation. Secondly, we find that the bare coefficient D⊥ is
nonzero, while it appears to be zero in [5]. Despite being zero,
the term appears in the analysis of [5] since it is generated un-
der a dynamical renormalization group, hence the difference is
only in the bare theory. Finally, g5 = 1 and v0 appears in front
of ∂‖�v⊥, despite the lack of Galilean invariance. Clearly, these
small differences are irrelevant for the subsequent analysis,
which matches exactly the one of [5].

In particular, since the linearized equations are the same
as in [5], the modes and correlators take the same form,
even if the values of the coefficients are more constrained
in our passive fluid. Thus, we see that the nonequilibrium
features characterizing active matter are not relevant for the
hydrodynamic description of transport: all observables, such
as modes, speeds of sound and correlators, can be obtained
from the hydrodynamics of a passive fluid coupled to an
external potential U .

To see this better we analyze one example in particular,
which is more sensitive to the specific values of the param-
eters. One of the key signatures of the Toner and Tu model
is the fact that there are two speeds of sound v±(θ ), where θ

is the angle between the wave vector �q and the background
velocity. Specifically at θ = 0 one finds v+(θ = 0) = v0 and
v−(θ = 0) = v0λ1 [3]. This effect is observed in simulations
[27] and experiments [28]. Crucially, it was used to provide an
estimate of λ1 ≈ 0.75, which was interpreted as a signature of
the breaking of Galilean boost symmetry. As we have shown,
even for boost-agnostic fluids we find (g5 =)λ1 = 1. It would
naively seem that our model fails to reproduce the observed
phenomena; however, this is not correct. Indeed, at θ = 0 we
find that the sound speed once again has two values [5]:

v+(θ = 0) = v0, v−(θ = 0) = v0

(
1 − n0Un

2v2
0Uv

)
(14)

and the difference vanishes when Un = ( ∂U
∂n )v2 = 0. The fact

that Un �= 0 is what allows us to have two different speeds
of sound at θ = 0, despite having λ1 = 1. We remark that
at arbitrary θ we observe the same angular dependence
discussed in [3].

Interestingly, the parameter Un in (14) is key to the break-
ing of time-reversal invariance [29,30]. Notice that the Toner
and Tu equations [3] break Onsager relations [31] not only
in the coefficient Un, but also through the λi (see also [32]
for a discussion on time-reversal invariance in active-matter
systems). This is very unusual from the point of view of hy-
drodynamics; usually in hydrodynamics the ideal fluid (which
follows from local equilibrium) is always time-reversal invari-
ant. Breaking of the Onsager relations only appears through
viscous corrections or external forces. Contrary to this, the
Toner and Tu model violates Onsager relations at lowest order
in derivatives, therefore equilibrium (even in the disordered
phase) is not time-reversal invariant.

We emphasize the conclusions of this sectionas follows:
we are able to reproduce the phenomenology, for example,
the modes and response functions, of the Toner-Tu model
from the hydrodynamics of passive fluids in the presence of
an external potential while imposing all the thermodynamic
relations one finds in the passive fluid. The active nature of
the fluid does not need to modify the constitutive relations,
in particular their thermodynamic character, to be compatible
with observations. As we shall see in the next sections, this
is further verified by considering the scaling behavior of the
transport terms under the dynamical renormalization group.

IV. DYNAMICAL RENORMALIZATION GROUP

Having derived the Toner-Tu equations from first princi-
ples, we use the fact that several of our transport coefficients
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are pure functions of thermodynamic parameters, (6), to
our advantage; namely, we constrain the scaling behav-
ior of the transport coefficients. Using standard notations,
we rescale fields and coordinates as (�v⊥, δn, �x⊥, x‖, t ) =
(bχ �v ′

⊥, bχδn′, b�x′
⊥, bζ x′

‖, bzt ′). With this choice of scalings
the equations of motion take the same form as before, but with
rescaled transport coefficients given by

(w1, g3,4,5)′ = bz−1+χ [(w1, g3,4,5) + graphs], (15a)

(w2,3, g1,2)′ = bz−ζ+χ [(w2,3, g1,2) + graphs], (15b)

(ξn, Dv )′ = bz−1−ζ [(ξn, Dv ) + graphs], (15c)

(ξ‖, D‖)′ = bz−2ζ [(ξ‖, D‖) + graphs], (15d)

(ξv,⊥, D⊥)′ = bz−2[(ξv,⊥, D⊥) + graphs] (15e)

�′ = bz−ζ+1−d−2χ (� + graphs), (15f)

where “graphs” represents perturbative corrections that are
obtained from integrating out the fast modes with wave vector
b−1� � | �q⊥| � � and � is a UV cutoff [33,34]. As was
shown in [3,34], the asymptotic �q → 0 behavior of the cor-
relators is determined by the fixed-point values of the scaling
exponents ζ , z, and χ . Therefore, a lot of effort has been
devoted to identifying the critical points of these β functions
using both clever symmetry arguments [3,35–37] or through
more direct computation [38,39].

The simplest such fixed-point example is the linear one,
where nonlinear terms are ignored. It is given by (z, ζ , χ ) =
(2, 1, 2−d

2 ). However, the linear fixed point is unstable for
d < 4, as nonlinearities become relevant in the IR. Another
example is found in [3], where Toner and Tu obtained exact
exponents in d = 2 taking advantage of an emergent pseudo-
Galilean symmetry. They obtain (z, ζ , χ ) = (6/5, 3/5,−1/5)
These results, however, are invalidated by the more accurate
analysis of [5], which agrees with our expressions (13a) and
(13b), due to the presence of new nonlinearities ignored in the
original work.

A. Entropy conservation and nonlinear terms

We now argue that we can fix the values of the criti-
cal exponents in (15) exactly if we assume, as has been
demonstrated numerically [40], an exact scaling for the noise
correlator coefficient �. Looking at the nonlinear terms in
our hydrodynamic expressions, the associated bare trans-
port coefficients gi and wi all depend on global equilibrium
thermodynamic properties (like ρ0, n0, v0, and P), their
thermodynamic derivatives (such as susceptibilities, com-
pressibilities, ...) and derivatives of the external potential
( ∂U

∂n )v2 and ( ∂U
∂�v2 )n. As these quantities are thermodynamic in

origin, they must not receive perturbative corrections as there
are no hydrodynamic modes in global equilibrium, where
these quantities are defined, that can renormalize these values.

More precisely, the hydrodynamic constitutive relations
are not just the most general expressions compatible with
symmetries; they are constrained by the second law of ther-
modynamics. For example, at first order in derivatives, the
second law imposes well-known constraints on the signs of
the dissipative transport coefficients. Less appreciated is the
fact that for ideal fluids the second law forces particular ther-

modynamic relations to be satisfied. To demonstrate this for
the passive fluid, consider the entropy of the system, which
is a function of the thermodynamic variables s = s(n, �v2),
and its associated entropy flux �Js = (s − P/T0)�v with T0 some
constant temperature. Then, using the thermodynamic relation
T0ds = −μ dn − �v · d�g, it can be shown that the ideal fluid
Eqs. (1) imply entropy is conserved, ∂t s + �∇ · �Js = 0. This
result holds generically in hydrodynamics and tells us that the
ideal fluid does not produce entropy as a consequence of local
equilibrium.

In the presence of an external potential U , the entropy of
the ideal fluid satisfies a modified conservation law

T0(∂t s + �∇ · �Js) + U �v2 = 0. (16)

We emphasize that this equation is a consequence of the ideal-
fluid equations of motion and the definition of the entropy s.
That (16) holds identically for all solutions of the ideal-fluid
equations of motion is subsequently a consequence of thermo-
dynamic relations between coefficients appearing in the other
transport equations. As such, (16) holds for any solution of
the fluid equations of motion including those in which the
longitudinal fluctuations are integrated out using (11). This
can be seen directly if we expand (16) up to order two in
fluctuations and eliminate δv‖ using (11) to obtain

T0∂tδs + ϕ �∇⊥ · �v⊥ + π∂‖δn + f1δn( �∇⊥ · �v⊥)

+ f2(�v⊥ · �∇⊥)δn + f3∂‖|�v⊥|2 + f4∂‖(δn)2 + O(∂2) = 0,

(17)

where ϕ, π , and the fi are again functions that depend on the
thermodynamics and the external potential (see Appendix B).
Applying the definition of s in terms of the other charges,

T0∂tδs = −μ∂tδn − (v0 + δv‖)δt g‖ − �v⊥ · ∂t �g⊥, (18)

employing the reduced equations of motion (13a) and (13b),
and also the reduced equation for ∂t g‖, we indeed find that
(17) is identically satisfied.2

For the bare theory at the ideal level, satisfaction of (16)
independently of the flow is just a consequence of thermo-
dynamic relations between transport coefficients. Once we
proceed with the first step of the dynamical renormalization
group and integrate out the fast modes we will find that
Eqs. (13a), (13b), and (17) have the same form, but for renor-
malized values of the transport coefficients. Our argument is
that the renormalized dynamical Eqs. (13a) and (13b) should
still identically solve (17) upon using thermodynamic rela-
tions.

2One needs to be careful as in (13b) the time derivative acts on
velocity fluctuations, while to check (17) we need the time derivative
to act on the momentum.
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To clarify this last step, we can look at a specific example. Inserting the equations of motion in (17) we find many terms, some
of the simplest ones being

(
f3 − μ0w3 − 1

2
v0ρ0

)
∂‖|�v⊥|2 = 0, (19a)

(
∂ρ

∂n
v2

0 − 2
∂ρ

∂v2
v3

0α1 + κ − v0α1ρ0 + f2 + μ0w1

)
�v⊥ · �∇δn = 0, (19b)

which, as expected, vanish for the bare values of the transport
coefficients reported in Appendix B. Suppose that we per-
form the first step of the dynamical renormalization group on
Eqs. (13a), (13b), and (17). This in general will leave the form
of the equations invariant, but will change the values of the
transport coefficients due to graphical corrections, e.g., fi →
f ′
i = fi + δ fi. This process will not affect the coefficients in

the longitudinal momentum equation, since the fluctuation δv‖
is not dynamical. Subsequently, we find the same constraints
as in (19), but written in terms of the renormalized values f ′

i
and w′

i. Finally, imposing that the equation is still identically
satisfied for the new values of the coefficients amounts to
requiring that the perturbative corrections obey

δ f2 + μ0δw1 = 0, δ f3 − μ0δw3 = 0. (20)

Because the chemical potential μ0 is a nonuniversal function,
and because it does not appear in our equations of motion, the
only way to make the above expressions vanish is to have that
δ f2 = δ f3 = δw1 = δw3 = 0. At order two in fluctuations we
find one last nontrivial relation δ f4 − μ0δw2 = 0, which im-
plies that w2 cannot receive perturbative corrections either.
Therefore, the nonlinear transport coefficients w1, w2, and w3

in (13a) cannot receive graphical corrections if the ideal fluid
is not to produce entropy.

To find all the possible constraints one should expand the
entropy Eq. (16) to order three in fluctuations, although the re-
sulting expressions become rather long. Specifically, at order
three in fluctuations we find the constraints

δgi + δli = 0, (21)

where li are coefficients that arise expanding the entropy
Eq. (16) up to order three in fluctuations. These relations seem
less restricting than those in (20); however, had we used n
and �g as our variables of choice to write (13b) (which are the
natural variables to study entropy conservation, instead of n
and �v), the above constraints would present thermodynamic
derivatives ∂�v/∂�g in front of δgi, suggesting again that the
perturbative corrections of gi and li must be independent, and
thus they should all vanish.

The usual arguments used to forbid graphical renor-
malization are grounded in the continuous symmetries of
the equations of motion (e.g., the Galilean symmetry in
Navier-Stokes hydrodynamics [34]). Here we rely on another
continuous symmetry, entropy (non-)conservation. This lat-
ter symmetry can be formalized in terms of Kubo Martin
Schwinger (KMS) symmetries of the Schwinger-Keldysh path
integral (see [26] for a discussion). This argument, perhaps
unknowingly, is what prompted Toner and Tu to assert that λn

in (2b) should be kept fixed at 1 [3]. Here, we propose that the

same argument can be generalized to include all the ideal-fluid
transport coefficients.

We remark that this conclusion is in agreement with
all known exact results obtained in the past based on
the pseudo-Galilean invariance. Specifically, the results for
Malthusian flocks in d = 2 [35,41] and d = 3 [38,42] and
incompressible flocks in d = 3 [43] all agree that nonlin-
ear terms should not receive perturbative corrections. The
only exception is incompressible polar fluids in the disor-
dered phase, for which perturbative corrections have been
explicitly computed [44]. Nevertheless, even this last case
can be understood from our argument. In the incompress-
ible disordered phase, both chemical potentials μ0 and v0

are zero, moreover δv‖ cannot be integrated out. Hence the
thermodynamics of the system simplifies significantly and
we find δli + δgi = 0 without any thermodynamic quantity
in front of δgi, thus the only constraint is that perturba-
tive corrections to the entropy equation transport coefficients
must be equal to perturbative corrections to the momentum
equation ones.

B. Exact scaling exponents

Having understood that the nonlinear terms should not
receive perturbative corrections, we can impose this on the
scalings of the coefficients gi and wi in (13a) and (13b),
finding two equations for the fixed point:

z − 1 + χ = 0, z − ζ + χ = 0. (22)

To completely fix the exponents we need a third equation and
as such we will employ the hyperscaling relation. This ad-
ditional constraint follows from assuming that the scaling of
� is exact. The reason for this is very practical, and comes
from the fact that recent simulations suggest it is a universal
law [40]. Furthermore, a constant noise correlator � should in
general receive contributions from at least two nonlinearities,
each carrying a power of �q. Corrections are then O(q2), which
are irrelevant compared to � in the hydrodynamic limit. Im-
posing this last condition

z − ζ + 1 − d − 2χ = 0 (23)

we find the exact scaling exponents

z = 2 + d

3
, ζ = 1, χ = 1 − d

3
(24)

valid for all 2 � d � 4, assuming again exactness of the
scaling of �. These expressions correctly interpolate to the
mean-field theory results which hold for d � 4. They are
in perfect agreement with recent state-of-the-art numerics
on the Vicsek model [40] which found discrepancies when
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TABLE I. Critical exponents for Toner and Tu [3] and Vicsek
[40], compared to the exact exponent computed in this work.

d = 2 d = 3

TT98 Vicsek This work TT98 Vicsek This work

χ −1/5 −0.31(2) −1/3 −3/5 −0.62 −2/3
ζ 3/5 0.95(2) 1 4/5 1 1
z 6/5 1.33(2) 4/3 8/5 1.77 5/3
α 8/5 1.67(2) 5/3 14/9 1.59(3) 23/15

comparing to the standard Toner and Tu expressions. These
are outlined in Table I. We also included in the table the
large number fluctuation exponents 〈δN〉2 ∼ 〈N〉α . These ex-
ponents should be 1 for thermal phases, while polar active
matter hydrodynamics predicts α = 1 + (d + ζ + 2χ − 1)/d
[1,40,45]. In the specific case of d = 2 our argument also
matches recent studies based on symmetry arguments [46].

As expected, χ < 0 in d = 2, implying that velocity fluc-
tuations are weak and do not destroy the ordered phase. The
Mermin-Wagner theorem would forbid continuous phase tran-
sitions below two dimensions; however, active matter systems
defy this expectation due to their “nonequilibrium nature.”
In the past this has been attributed to λi terms in (2). On
the contrary, in our approach, the λi are constrained by local
equilibrium and do not meaningfully depend on any activity.
Yet nevertheless, as we conclude this section, we find we have
reproduced the necessary scaling properties of the transport
coefficients. This adds to our evidence from previous sec-
tions where we recovered the transport pheonomenology of
the active fluid.

V. OUTLOOK

We have demonstrated that polar active fluids correspond
to passive fluids lacking boost symmetry when the latter are
supplemented with a nonthermal noise term and a poten-
tial inducing spontaneous symmetry breaking. In particular,
thermodynamic relations must continue to hold in the or-
dered phase. Consequently, assuming exactness of the noise
correlator following standard arguments [40], we precisely de-
rived expressions for the critical exponent. These expressions
align excellently with numerical simulations of the Vicsek
model and also correlate well with experimental observations

on epithelial cells [47], self-propelled rollers [28], bacterial
colonies [48], polar rods [49], and earlier simulations of the
Vicsek model [50,51]. This paves the way for more precise
computations, where the constraint derived in our approach
can give better agreement with experimental and numerical
results. It would also be interesting to derive the constraints
we have found from a kinetic theory using the approaches
described in [29,30] and test them on more exotic types of
matter [52–54].

We expect our argument to be valid for generic systems,
like Malthusian flocks [35,46] or incompressible phases [2].
It would also be interesting to show precisely how entropy
conservation constrains the ideal-fluid transport coefficients
at the level of the Feynman diagrams, even just for sim-
ple fluids without external potential U . Moreover, while we
omitted the consideration of temperature, as is customary
in the Toner-Tu model, it is straightforward to introduce an
additional scalar quantity, T , into our formalism. This leads
to a conservation equation associated with time translation.
Naturally, we anticipate this equation to undergo relaxation
similar to that of the equation for �g [26]. Understanding the
implications of this relaxed equation could provide insight
into the nature of entropy conservation/production within the
effective active matter systems.
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APPENDIX A: CONSTITUTIVE RELATIONS FOR
ORDER-ONE BOOST-AGNOSTIC HYDRODYNAMICS

In this appendix we give the constitutive relations for a
boost-agnostic fluid in d spatial dimensions up to and includ-
ing first order in derivatives. The constitutive relations for the
currents ji and τ i j are [20]

ji = nvi −
(

γ00Pi j∂ jμ + ζ00
viv j

|v|2 ∂ jμ + γ01
Pi( jvk)

|v| σ jk + ζ01
viv jvk

2|v|3 σ jk + ζ02

2

vi

|v|P jkσ jk

)
, (A1a)

τ i j = ρviv j + Pδi j −
[
η

(
Pk(iP j)l − 1

d − 1
Pi jPkl

)
σkl + 2γ01

Pk(iv j)

|v| ∂kμ + ζ01
viv jvk

|v|3 ∂kμ

+ ζ02
vk

|v|Pi j∂kμ + 2γ11
v(iP j)(kvl )

|v|2 σkl + 1

2
ζ11

viv jvkvl

|v|4 σkl + ζ12

2

(
Pi j v

kvl

|v|2 + viv j

|v|2 Pkl

)
σkl

+ ζ22

2
Pi jPklσkl

]
, (A1b)

where σi j = ∂iv j + ∂ jvi, Pi j = δi j − viv j

|v|2 is the projector orthogonal to the velocity, and μ is the chemical potential. The
momentum constitutive relation remains fixed at its ideal-fluid form, �g = ρ�v. Positivity of entropy production constrains the
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matrices of transport coefficients ⎛
⎝ζ00 ζ01 ζ02

ζ01 ζ11 ζ12

ζ02 ζ12 ζ22

⎞
⎠ � 0,

(
γ00 γ01

γ01 γ11

)
� 0, η � 0, (A2)

i.e., the ζ and γ matrices are positive semidefinite. We can rewrite the constitutive relations using n instead of μ as a
thermodynamic variable, which is more natural if we want to compare our results with [3]

ji = nvi −
(

γ̄00Pi j∂ jn + ζ̄00
viv j

|v|2 ∂ jn + γ̄01
Pi( jvk)

|v| σ jk + ζ̄01
viv jvk

2|v|3 σ jk + ζ̄02

2

vi

|v|P jkσ jk + mPi j∂ jv
2

)
, (A3a)

τ i j = ρviv j + Pδi j −
[
η

(
Pk(iP j)l − 1

d − 1
Pi jPkl

)
σkl + 2γ̃01

Pk(iv j)

|v| ∂kn + ζ̃01
viv jvk

|v|3 ∂kn

+ ζ̃02
vk

|v|Pi j∂kn + 2γ̃11
v(iP j)(kvl )

|v|2 σkl + 1

2
ζ̃11

viv jvkvl

|v|4 σkl + ζ̃12

2

(
Pi j v

kvl

|v|2 + viv j

|v|2 Pkl

)
σkl

+ ζ̃22

2
Pi jPklσkl + 2

t

|v|v
(iP j)k∂kv

2 + n

|v|Pi jvk∂kv
2

]
, (A3b)

where we redefined the transport coefficients by absorbing the susceptibilities

γ̄00 = γ00

(
∂μ

∂n

)
v2

, γ̄01 = γ01, ζ̄00 = ζ00

(
∂μ

∂n

)
v2

, (A4a)

ζ̄01 = ζ01 + 2ζ00|�v|
(

∂μ

∂v2

)
n

, ζ̄02 = ζ02, m = γ00

(
∂μ

∂v2

)
n

, (A4b)

γ̃01 = γ01

(
∂μ

∂n

)
v2

, γ̃11 = γ11, ζ̃01 = ζ01

(
∂μ

∂n

)
v2

, (A4c)

ζ̃11 = ζ11 + 2ζ01|�v|
(

∂μ

∂v2

)
n

, ζ̃02 = ζ02

(
∂μ

∂n

)
v2

, ζ̃12 = ζ12, (A4d)

ζ̃22 = ζ22, t = γ01

(
∂μ

∂v2

)
n

, n = ζ02

(
∂μ

∂v2

)
n

. (A4e)

In spite of the fact that there are ten independent order-
one transport coefficients, the equations of motion linearized
around a constant background velocity �v = v0x̂‖ will be such
that we can absorb all of them into three order-one diffu-
sive coefficients in the charge conservation equation and four
transport coefficients in the momentum equations.

APPENDIX B: TRANSPORT COEFFICIENTS
FROM INTEGRATING OUT THE LONGITUDINAL MODE

We introduce a notation, also used in the main text, for
the thermodynamic derivatives of the external potential U ,
the pressure P, the kinetic mass density ρ, and the entropy
density s:(

∂F

∂n

)
v2

= Fn,

(
∂F

∂�v2

)
n

= Fv,

(
∂2F

∂n2

)
v2

= Fn2 ,

(
∂2F

∂ (�v2)2

)
n

= Fv2 ,
∂2F

∂n ∂�v2
= Fn,v (B1)

with F = {U, P, ρ, s}. These thermodynamic derivatives are
evaluated on the background, at n = n0 and �v2 = v2

0 . We re-
mark that, without loss of generality, we set Uv2 = Un,v = 0.
Reinstating these derivatives simply changes the values of αi

in (11), but does not affect any conclusion.

In the main text, when we define the effective equation for
fluctuations of the charge density once the longitudinal mode
is integrated out, we make use of the following definitions:

v2 = v0 − α1n0, w1 = 1, (B2a)

w2 = α1 + α2n0, w3 = n0

2v0
, (B2b)

ξn = α3n0 + γ̄01 + ζ̄02, D‖ = n0α4 + ζ̄00 − α1ζ̄01,

(B2c)

D⊥ = γ̄00 − α1(2v0m + γ̄01). (B2d)

Similarly, for the transverse velocity fluctuations we find

κ = 1

ρ0
(Pn − 2v0α1Pv ), g1 = −α1, (B3a)

g2 = 1

ρ0

(
n0α1ρn − 2α2

1n0v0ρv + 2v0α4Uv

) − α1, (B3b)

g3 = Pn2

2ρ0
+ Pv

ρ0

(
α2

1 − 2v0α2
) + κ (2v0α1ρv − ρn)

2ρ0

− 2v0α1Pn,v

ρ0
+ 2v2

0α
2
1Pv2

ρ0
, (B3c)
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g4 = 1 − 1

ρ0
(n0ρn − 2v0n0α1ρv − 2v0α3Uv ), g5 = 1,

(B3d)

Dv = 1

ρ0
(2v0α4Pv + γ̃01 + ζ̃02 − α1[2v0(t+ n) + γ̃11 + ζ̃12]),

ξv = 1

ρ0
(2v0α3Pv + ζ̃22), (B3e)

ξ‖ = γ̃11

ρ0
, ξ⊥ = η

ρ0
. (B3f)

Finally, the coefficients that appear in the entropy Eq. (17) are

ϕ = s0T0 − P0 + 2α3v
3
0Uv, (B4a)

π = v0(T0sn − Pn) + α1
(
P0 − s0T0 + 2v2

0 (Pv − T0sv )
)

+ 2α4v
3
0Uv, (B4b)

f1 = T0sn − Pn + v0(2α1Pv − 2α1T0sv − 3α3Un), (B4c)

f2 = T0sn − Pn + 2v0α1(Pv − T0sv ), (B4d)

f3 = P0 − s0T0

2v0
, (B4e)

f4 = v0(T0sn2 − Pn2 )

2
+ α1(Pn − T0sn) + 2v2

0α1(Pn,v − T0sn,v )

− 3α2
1v0(Pv − T0sv ) − 2v3

0α
2
1 (Pv2 − T0sv2 )

+α2(P0 − T0s0) + 2v0α2(Pv − T0sv ) − 3

2
α4v0Un. (B4f)

APPENDIX C: DETAILS OF THE ENTROPY ARGUMENT

In this appendix we add extra details to the argument that
allows us to fix the exact scalings of nonlinear terms.

We remind the reader once more that the hydrodynamic
equations are not just the most general expressions compatible
with symmetries, but are also constrained by the second law
of thermodynamics. In particular, we always require that the
ideal fluid (i.e., lowest order in derivatives) conserves entropy,
while higher derivative dissipative corrections produce en-
tropy. Our argument to fix the scaling of the nonlinear terms
under a dynamical renormalization group (DRG) is grounded
on the idea that entropy conservation of the ideal fluid should
be conserved along the RG flow.

We are interested in the ideal fluid, hence we will consider
the equations of hydrodynamics up to order one in derivatives.
First, focus on the isotropic theory, namely, Eqs. (2) truncated
at order one, where the values of the λi parameters are
given in (6):

∂t �v + λ1(�v · �∇)�v + λ2( �∇ · �v)�v + λ3 �∇|�v|2 + �∇P1 + �v(�v · �∇P2) = U �v + O(∂2), (C1a)

∂t n + λn �∇ · (n�v) + O(∂2) = 0, (C1b)

where we also set to zero the noise term, which is not important for this derivation.
Consider now the entropy density s = s(n, �g) given as a function of the thermodynamic variables n and �g. The entropy flux,

at lowest order in derivatives, takes the form �Js = (s − P/T0)�v, where T0 is some constant temperature. At lowest order in
derivatives entropy is conserved, up to the external field U , so that we have the entropy conservation law (16)

∂t s + �∇ · �Js + U �v2 = 0. (C2)

To show this we can use the thermodynamic relation

T0ds = −μ dn − �v · d�g, (C3)

to substitute the time derivative of the entropy ∂t s in terms of the time derivatives of ∂t n and ∂t �g, where we remind the reader that
�g = ρ(n, �v2)�v in terms of the velocity and μ = μ(n, �v) is the chemical potential. Using now the equations of motion at lowest
order in derivatives (C1) we find that (C2) is identically satisfied by the dynamics.

This means that the full nonlinear isotropic theory identically conserves entropy (C2) (at lowest order in derivatives). Clearly,
Eq. (C2) must hold even when we expand in fluctuations and integrate out the heavy mode δv‖. We can show this explicitly:
consider the anisotropic equations of motion (13a) and (13b), as always truncated at lowest order in derivatives

∂tδn + v2∂‖δn + n0 �∇⊥ · �v⊥ + w1 �∇⊥(�v⊥δn) − w2∂‖(δn)2 − w3∂‖|�v⊥|2 = 0, (C4a)

∂t �v⊥ + v0∂‖�v⊥ + κ �∇⊥δn + g1δn∂‖�v⊥ + g2�v⊥∂‖δn + g3 �∇⊥(δn)2 + g4�v⊥( �∇⊥ · �v⊥) + g5(�v⊥ · �∇⊥)�v⊥ = 0. (C4b)

We can apply the same procedure used to obtain the above equations also to the entropy equation. Expanding (C2) up to order
three in fluctuations3 and plugging in the expression for the heavy mode (11) we obtain (17):

T0∂tδs + ϕ �∇⊥ · �v⊥ + π∂‖δn + f1δn( �∇⊥ · �v⊥) + f2(�v⊥ · �∇⊥)δn + f3∂‖|�v⊥|2 + f4∂‖(δn)2 + l1∂‖(δn)3

+ l2|�v⊥|2∂‖δn + l3δn2 �∇⊥ · �v⊥ + l4|�v⊥|2 �∇ · �v⊥ + l5�v⊥ · �∇(δn)2 + l6δn∂‖|�v⊥|2 + l7(�v⊥ · �∇⊥)|�v⊥|2 = 0. (C5)

The values of fi are found in Appendix B, while the li are extremely long expressions composed of several thermodynamic
derivatives which can be obtained in the same manner, but which we avoid writing here.

3Order three is necessary to constrain all the coefficients wi which appear in the velocity Eq. (C4).
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Finally, we can use again (C3) and (11) to substitute ∂tδs in the above equation in terms of time derivatives of n and �v⊥. Upon
also using the equations of motion (C4) we find(

ϕ + μ0n0 + 2v3
0α3

∂U

∂v2
+ ρ0v

2
0

)
( �∇⊥ · �v⊥) +

(
π + ∂P

∂n
v0 + ∂ρ

∂n
v3

0 − 2
∂P

∂v2
v2

0α1 − 2
∂ρ

∂v2
v4

0α1 + 2
∂U

∂v2
v3

0α4

+ μ0v2 − 2v2
0α1ρ0

)
∂‖δn +

(
∂ρ

∂n
v2

0 − 2
∂ρ

∂v2
v3

0α1 − 6
∂U

∂v2
v2

0α1α3 + ∂μ

∂n
n0 − 2

∂μ

∂v2
v0n0α1 − 2v0α1ρ0 + f1 + μ0w1

)

× δn( �∇⊥ · �v⊥) +
(

∂ρ

∂n
v2

0 − 2
∂ρ

∂v2
v3

0α1 + κ − v0α1ρ0 + f2 + μ0w1

)
(�v⊥ · �∇⊥)δn + (2 f3 − v0ρ0 − 2μ0w3)

1

2
∂‖|�v⊥|2

+
(

∂2P

∂n2
v0 + ∂2ρ

∂n2
v3

0 + ∂μ

∂n
v2 − ∂P

∂n
α1 − 4

∂2P

∂n ∂v2
v2

0α1 − 5
∂ρ

∂n
v2

0α1 − 4
∂2ρ

∂n ∂v2
v4

0α1 − 2
∂μ

∂v2
v0v2α1 + 4

∂P

∂v2
v0α

2
1

+ 4
∂2P

∂ (v2)2
v3

0α
2
1 + 12

∂ρ

∂v2
v3

0α
2
1 + 4

∂2ρ

∂ (v2)2
v5

0α
2
1 − 4

∂P

∂v2
v2

0α2 − 4
∂ρ

∂v2
v4

0α2 − 6
∂U

∂v2
v2

0α1α4 + 4v0α
2
1ρ0 − 4v2

0α2ρ0

+ 2 f4 − 2μ0w2

)
1

2
∂‖(δn)2 + · · · = 0, (C6)

where the dots represent terms that are order three in
fluctuations and which we avoid writing to not clutter the
expressions even more. As expected, we find that Eq. (C5) is
identically satisfied by the equations of motion (C4). This is
in agreement with the statement of the main text: the values
of the ideal-fluid transport coefficients [e.g., the wi and gi in
(C4)] are not arbitrary, but must take specific values for the
entropy current to satisfy (C5) identically on shell.

Thus, we have understood that in the bare theory Eq. (C5)
is identically obeyed by the dynamics. Despite not being an
independent degree of freedom, ideal-fluid entropy conserva-
tion is a symmetry of the system, which must be preserved
along the RG flow when we integrate out the fast modes. Like
all symmetries, it constrains the perturbative renormalization
of the parameters, specifically it forbids graphical corrections
to the ideal-fluid transport coefficients, as we now explain.

Given the equations of motion (C4) (to which we add back
the dissipative corrections and the noise term) we proceed
with the first step of the DRG [3,34]. Namely, we separate
the modes �v⊥ and δn in Fourier space in fast modes, for which
b−1� � | �q⊥| � �, and slow modes, given by | �q⊥| � b−1�,
for some cutoff �. Given the equations are nonlinear, there
will be mixing between the modes, hence after we integrate
out the fast modes (as a power series in the nonlinearities and
by averaging over the fast noise modes) we obtain a set of
equations identical to our bare theory (C4), but with modified
or dressed transport coefficients4

w′
i = wi + δwi, g′

i = gi + δgi. (C7)

Notice, in particular, that the entropy Eq. (C5), despite not be-
ing part of the dynamics, also receives graphical corrections.
Indeed, when we integrate out the fast modes we can check
the effect it has also on (C5). This suggests that also fi and li

4We list here only the nonlinear transport coefficients; however, in
principle, also v0, v2, κ , and n0 in (C4) could receive corrections.
Our argument implies that these terms too do not receive perturbative
corrections, as can be argued also using diagrams [3].

get modified as

f ′
i = fi + δ fi, l ′

i = li + δli. (C8)

The terms δwi, δgi, etc., are what we refer to as perturbative or
graphical corrections, since they arise as a power series in the
nonlinearities which can be computed (at least in principle)
using diagrams.

We can now study the effect that such perturbative correc-
tions would have on the entropy conservation law. Consider
then the renormalized Eq. (C5), written in terms of l ′

i and f ′
i ,

and substitute one last time ∂tδs in favor of ∂tδn and ∂t �v⊥
using (C3). Employing the renormalized equations of motion
we arrive again at (C6), but where all the transport coefficients
are now primed. We expect entropy to still be conserved
upon integrating out the fast modes via DRG, which means
that Eq. (C6) should vanish identically even for the primed
values of the transport coefficients. This immediately severely
constrains the parameters, forbidding graphical corrections to
the nonlinear terms.

As an example, we can look at the term ∂‖|�v⊥|2 in (C6).
The associated coefficient is

2 f ′
3 − v0ρ0 − 2μ0w

′
3 = 2 f3 + 2δ f3 − v0ρ0 − 2μ0w3

− 2μ0δw3 = 2δ f3 − 2μ0δw3,

(C9)

where in the last step we used the fact that the bare theory
(without the prime) identically solves term by term Eq. (C6).
Hence, the requirement that entropy remains conserved along
the RG flow implies that this term vanishes identically,
namely, δ f3 − μ0δw3 = 0. Because the chemical potential μ0

is a model-dependent function which never appears in our
dynamical Eqs. (C4), the only possibility is that the two graph-
ical corrections δ f3 and δw3 vanish separately at all orders in
perturbation theory.

The same logic applies to all the terms in (C6) up to order
three in fluctuations, suggesting that all the linear and non-
linear terms with only one derivative never receive graphical
renormalization. Consequently, the scalings in (15) are exact
at all orders, which is the conclusion of our argument. Notice
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that higher-order dissipative corrections [the ξ and D terms
in (13a) and (13b)] are not constrained by this argument,
as it should be, since for them the second law of thermo-

dynamics does not impose any equality. Indeed, it is well
known that viscous terms do receive perturbative corrections
under DRG [3,34].
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