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Summary

At its core, hydrodynamics is a many-body low-energy effective theory for the
long-wavelength, long-timescale dynamics of conserved charges in systems
close to thermodynamic equilibrium. It has a wide range of applications,
that span from nuclear physics, astrophysics, cosmology, and more recently
strongly-interacting electronic phases of matter. In solid state systems,
however, symmetries are often only approximate, and softly broken by the
presence of the lattice, impurities and defects, or because the symmetry
is accidental. Therefore, the hydrodynamic regime must be expanded to
include weak non-conservation effects, which lead to a theory known as
quasihydrodynamics.

In this thesis we make progress in understanding the theory of (quasi)
hydrodynamics, with a specific focus on applications to condensed matter
systems and their holographic description. First, we consider an electron fluid
in a strong magnetic field for which translations are broken by the presence of
Charge Density Waves. Therefore, the low-energy theory contains Goldstone
modes associated with the broken symmetries, which modify the spectrum
and transport properties. We focus on a new regime at non-zero lattice
pressure and compare with holographic models, finding perfect agreement
between the two descriptions.

Next we consider a simple system that mimics the weakly-coupled Drude
model from a hydrodynamic perspective. Specifically, a charged fluid in an
external electric field in the presence of impurities that relax momentum and
energy. We look for steady states, and we find that stationarity constraints
should be modified to include relaxations, which consequently give novel
predictions for the thermoelectric transport.

Finally, we study the effect of the axial anomaly on the transport proper-
ties of Weyl semimetals in the hydrodynamic regime. We suggest a better
approach to deal with the derivative counting of the magnetic field, correcting
mistakes in the literature. Subsequently, we discuss the DC values of the
conductivities and look for models that obey fundamental and phenomeno-
logical considerations. We find that generalized relaxations, which we study
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in depth using variational methods and kinetic-theory approaches, are a
necessary ingredient to have finite DC conductivity, conserve electric charge,
and have the correlators obey Onsager relations. Moreover, our model pro-
vides qualitatively new predictions for the thermoelectric transport, which
could be used to probe the hydrodynamic regime in such materials.

Figure 1: Figure taken from xkcd.
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Chapter 1
Introduction and context

“I don’t see how he can ever finish if he doesn’t begin.”

Lewis Carroll, Alice in Wonderland

1.1 Hydrodynamic regime and applications

Hydrodynamics and hydrostatics are very old subjects, which date back more
than two thousands years ago to Archimedes’ work, however it is only in the
18th century that physicists started a systematic study of hydrodynamics to
understand the flow of water and liquids in general.

To this day hydrodynamics is fundamentally well understood [7], but it
remains one of the topics at the forefront of research. This is due to the
numerical and theoretical challenges on one side, but also to its universality,
which makes it a great tool to describe the phenomenology of many different
effects in all branches of physics: astrophysics (like neutron stars [8], mergers
[9], accretion disks [10]), cosmology [11], condensed matter (graphene [12, 13],
high-Tc superconductors [14, 15], Dirac and Weyl semimetals [16, 17], . . . ),
active and soft matter [18], and high-energy physics (quark-gluon-plasma
produced at RHIC and LHC [19–21]), . . .

From a theoretical perspective, hydrodynamics has gained a lot of atten-
tions in recent years, thanks to a renewed interest following the discovery of
the fluid/gravity duality in holography [22–24]. This has opened the paths
to many new research avenues in theoretical hydrodynamics, of which some
examples are: a classification of dissipative superfluid terms [25], and of
second- [26–28] and third-order hydrodynamics [29, 30], parity-odd fluids
[31–33], quantum anomalies [34, 35], spin hydrodynamics [36–38], viscoelastic
and viscoplastic fluids with broken translation symmetry (both spontaneous
and explicit) [1, 15, 39–41], developments in fluctuating hydrodynamics as

5



Chapter 1. Introduction and context

an EFT from an action principle [42–46], a full classification of the pos-
sible classes of hydrodynamic transport [47, 48], quasihydrodynamics [49,
50], Hydro+ to extend hydrodynamics to include slow modes near critical
points [51], fracton hydrodynamics [52–54], hydrodynamics with higher-form
symmetries [55–57].

Before dealing with some of these research paths, however, we should
discuss what hydrodynamics is first. It can be understood as a universal low-
energy theory for many-body thermal systems that describes the collective
macroscopic dynamics of conserved charges (or other low-energy modes) in
the long-wavelength and small-frequency regime ω,k ≪ T , where T is the
temperature of the system. To understand the emergence of hydrodynamics
we will follow the heuristic argument given in [44].

Consider some quantum many-body system. At zero temperature, the
low-energy theory is characterized by massless quasiparticle excitations above
the ground state. Generically, these modes are long-lived and give rise to e.g.
Fermi-liquid behaviour. If the system is thermal, however, then there is a
large bath of gapless quasiparticles and any new excitation becomes quickly
incoherent in the bath, on a time (and length) scale fixed by the microscopic
dynamics τ , l. This effectively means that the quasiparticles become gapped
due to the presence of the thermal bath, and decay on very short scale,
leading to a system that thermalizes quickly and can thus be assumed in
local thermodynamic equilibrium on macroscopic scales. This should be
understood from a coarse-grained perspective by dividing the system in small
volume elements, such that each element is small enough to be effectively
point-like in the effective-theory description, but microscopically large enough
to have a well-defined thermodynamic limit.

Thus, in this regime, the low-energy dynamics is governed by the con-
served charges, because they cannot be destroyed locally, but can only diffuse
from regions with an excess of charge to regions with a deficit of charge,
and this process is parametrically slower than the local microscopic thermal-
ization, see Figure 1.1. Therefore, the hydrodynamic limit is reached, and
we end up with a low-energy theory for long-wavelength/long-timescale dy-
namics that is governed by the local conservation of charges (and eventually
other low-energy collective degrees of freedom which might survive, like in a
superfluid phase).

Clearly, the separation of scales between microscopic thermalization and
macroscopic diffusion needed for the emergence of hydrodynamics happens
more sharply in phases which are strongly coupled and clean of impurities. In
these systems the scattering time between quasiparticles becomes extremely
short, see Figure 1.2. In particular, we will be interested in describing the
low-energy dynamics of strongly-coupled condensed matter systems. While
the intention of this thesis is not to describe the detailed phenomenology of
specific condensed matter phases, the low-energy description of solid-state
physics is indeed one of the main motivation to expand on the theory of
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Chapter 1. Introduction and context

Figure 1.1: Figure taken from [44]. (a) Microscopic degrees of freedom thermalize
quickly to equilibrium. On the other hand, (b) conserved charges cannot be destroyed
locally and diffuse slowly. (c) The typical microscopic length scale l must be small
compared to the length over which conserved charges vary.

hydrodynamics, specifically in its relaxed version, i.e. quasihydrodynamics.

1.2 Canonical approach to hydrodynamics
In the canonical approach, (relativistic) hydrodynamics is understood as a
perturbative expansion in a small parameter, the Knudsen number Kn =
l/L ≪ 1, where L is the system size or the length over which thermodynamic
quantities vary, while l is the microscopic length scale. Specifically, we
can construct the derivative operator l∂ ∼ Kn which act as a perturbative
parameter expansion. From this point of view, hydrodynamics is a theory
based on the following constraints:

• a derivative expansion,

• the symmetries (continuous, discrete and broken),

• the local form of the second law of thermodynamics.

This leads to the formulation of hydrodynamics as a formal power series in
which the order zero (the ideal fluid) is non-dissipative, while the higher-order
corrections produce entropy, thus being dissipative. Like in any effective
theory, ideally adding higher-order terms should lead to a more accurate
description, at least within some convergence radius1. From the above

1There is strong evidence that the hydrodynamic series does not converge [58, 59],
nonetheless it can be Borel resummed, leading to all-order hydrodynamics.
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discussion, hydrodynamics stops being a sensible effective theory at length
scales shorter than the microscopic mean free path l.

Each term in the derivative expansion at order one or higher comes
with its own transport coefficient, which parametrizes the non-universal part
of fluid dynamics. These are functions of the thermodynamic quantities
whose values cannot be obtained directly from hydrodynamics alone, but
depends on the underlying microscopic theory, and can be computed from
Kubo formulae using various methods depending on the situation (lattice
calculations, kinetic theory, holography, QFT, . . . ).

Although, as we claimed, hydrodynamics has been very successful in
describing the physics of many different systems, as a classical theory it suffers
from fundamental problems. The first one is related to the fact that the
standard equations of hydrodynamics are not causal, and contain solutions
with super-luminal velocity, which ruin the stability of the theory (super-
luminal modes in one frame correspond to modes that travel back in time in
a boosted frame). Specifically, the group velocity diverges vg = dω

dk = 2γηk
for the shear mode dispersion relation, and becomes super-luminal, which
renders the theory acausal and unstable [60–62]. This prevents numerically
solving the equations of relativistic hydrodynamics from a set of initial
condition on a time-slice, ruining the predictability of the theory.

The classical solution to this problem comes from Maxwell and Cattaneo
for diffusion first [63, 64], and Müller, Israel, Stewart (MIS) for hydrodynamics
later [65–67]. Formally, the idea amounts to adding soft UV cut-offs τi

that tame the high-momentum behaviour of the hydrodynamic fluctuations.
Specifically, defining as πµν the dissipative shear tensor, Π the dissipative
shear bulk, and νµ the charge flux, the MIS theory paradigm prescribes to
modify the constitutive relations in dynamical equations as

(τπu
µ∂µ + 1)πµν = . . . (1.1a)

(τΠu
µ∂µ + 1) Π = . . . (1.1b)

(τνu
µ∂µ + 1) νµ = . . . (1.1c)

where the dots represent the standard terms appearing in the constitutive
relations. The corrections provided by this approach enter only at very
large frequency, however now the equations of hydrodynamics are strongly-
hyperbolic, can be solved numerically given a set of initial conditions, and
have a well-behaved thermal equilibrium state that is stable and causal. The
new parameters τi are associated with UV degrees of freedom: indeed in
MIS theory one finds a new non-hydrodynamic mode ω(k = 0) ∼ − i

τπ
which

decays quickly. To this day MIS theory, which can be formally obtained
from kinetic-theory arguments, is the most used formalisms in hydrodynamic
simulations [68].

In recent years there has been a new proposal to solve the problem of
causality and stability of relativistic hydrodynamics [69–73]. This approach
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Figure 1.2: If the system is strongly coupled and clean, scatterings with impurities are
rare, while electron-electron interactions happen on a microscopic timescale. Then
the system thermalizes locally very quickly, developing hydrodynamic behaviour.

is based on taking advantage of an ambiguity that is present in any hy-
drodynamic description. What happens is that the fluid variables are not
well-defined out of equilibrium, hence they are ambiguous up to derivative
corrections, the so-called frame redefinitions. Following this approach it is
possible to find a hydrodynamic frame (known as BDNK frame) in which first-
order relativistic hydrodynamics is strongly-hyperbolic, causal and stable, at
the cost of having more complicated constitutive relations.

The solution by Müller, Israel and Stewart requires working with second-
order hydrodynamics to be fully consistent [26]. This, however, leads to new
fundamental issues related to hydrodynamics. In particular, hydrodynamic
modes ω(k) are long-lived solutions to the conservation equations which can
cause instabilities in the system, since they are against the assumption of
local thermal equilibrium [74].

Classical hydrodynamics is only concerned with the dissipative part
of the system, without systematically taking into account the effects of
thermal fluctuations. However, fluctuations should always appear on par
with dissipative effects, according to the fluctuation-dissipation theorem [75].
This can be amended via a bottom-up construction by including fluctuations
as noise in the equations, thus turning hydrodynamics into a proper EFT,
following the Martin-Siggia-Rose formalism [42, 74, 76–78]. More recently,
also a top-down view on dissipative fluctuating hydrodynamics has been
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developed [43, 44, 79, 80], based on the closed time-path formalism of
Schwinger and Keldysh [81, 82], which has the advantage of working at the
full non-linear level, providing access to the n-point correlators.

Specifically, beyond linear order, modes can interact with themselves via
thermal fluctuations, and contribute to the renormalization of the transport
coefficients compared to their bare, linear-response, values. The renormal-
ization of transport coefficients depends on the UV scale ΛUV at which
hydrodynamics is expected to fail and is due to interaction between modes
close to the cut-off. These interactions can appear even in equilibrium due
to thermal fluctuations, and can cause the breakdown of the hydrodynamic
derivative expansion [74]. From a technical perspective, this is because the
interactions between modes modify the retarded correlators by non-analytical
terms which scale like O(ω3/2) in 3 + 1d2 [84, 85], hence these corrections
are effectively larger than the first-order hydrodynamics, which are linear
in O(ω), but smaller than second order corrections, which scale as O(ω2),
and cannot be captured by local derivative corrections. This non-analytic
behaviour is related to the well-known effect of long-time tails: namely, the
non-analytic ω3/2 dependence of e.g. 3 + 1d hydrodynamics corresponds to a
real-time evolution as t3/2 of the response function [86], which is slower than
exponential and decays slowly.

Finally, as we explained above, hydrodynamics stops being a sensible EFT
at length scales shorter than the microscopic scale l. This assumption, while
being at the core of the canonical approach, is challenged by the observation
that hydrodynamics seems to work well as a model for systems in which
the separation of scales does not happen sharply. This has sparkled a lot of
research in this direction, trying to understand this unreasonable effective-
ness of hydrodynamics. Research in this direction focused on resummation
methods for all-order hydrodynamics [58, 59, 68, 87] and the hydrodynamic
attractor [88, 89], but also an action-like description of hydrodynamics via
the Schwinger-Keldysh formalism [43, 44, 80].

We remark that the problems associated with causality, stability and
fluctuations appear in interpreting the equations of hydrodynamics as a set
of classical PDE, when solving for the real-time evolution of the fluid, and are
due to high-frequency, high-wavevector modes, far from the hydrodynamic
regime (hydrodynamics is not expected to hold at microscopic length scale
anyway). We decided to include this section for completeness and to give a
better context on the state of hydrodynamics, however in this thesis we will
be mostly concerned with the linear response of fluids in the hydrodynamic
regime, focusing on the ω,k → 0 properties of small fluctuations about some
global thermodynamic equilibrium state. Hence, we will simply assume
that suitable corrections to standard hydrodynamics exist, which render the
theory sensible, and that can be expanded to include the various extensions

2In 2 + 1-dimensions this is a logarithmic correction [83].

10



Chapter 1. Introduction and context

of hydrodynamics discussed in this thesis.

1.3 Other approaches

In the previous section we discussed the canonical approach, some of its
pitfalls and recent research avenues. There are however other possible points
of view to formulate hydrodynamics, that might give different insights into
what it is, how it relates to other theories, and how to expand upon the
framework of hydrodynamics.

Kinetic theory

One of the first methods, also from an historical perspective, comes from
kinetic theory [90, 91]. This might seem strange at first sight, since hy-
drodynamics is mostly understood as describing strongly-coupled phases of
matter that thermalize quickly, while kinetic theory sits on the other side
of the spectrum and is usually understood as describing weakly-coupled
theories. This apparent contradiction disappears once we appreciate that
hydrodynamics is extremely universal: in the presence of a single species of
quasiparticles (as it is often the case in kinetic theory) and no impurities
there is nothing that can stops the onset of hydrodynamics, which appears
naturally at long wavelength even at small couplings.

MIS hydrodynamics comes quite naturally from kinetic theory [66, 91,
92], providing a justification for the timescales τi which were introduced
phenomenologically in the previous section. More recently, the kinetic theory
approach to hydrodynamics has been generalized to naturally include different
hydrodynamic frames [93, 94], in particular the already-cited BDNK frame.
Furthermore, since kinetic theory is a microscopic description, this approach
also gives direct access to expressions for the transport coefficients in terms
of microscopic and thermodynamic parameters.

Schwinger-Keldysh formalism

Hydrodynamics is a very powerful tool, but from a microscopic point of
view the arguments used in the first Section 1.1 to explain the emergence of
hydrodynamics are purely heuristic and not satisfactory. First, the canon-
ical formulation does not systematically deal with thermal and quantum
fluctuations, which must be included separately in bottom-up approaches,
even if they are important in many situations such as turbulence, chaotic
systems, and the renormalization of transport coefficients (long-time tails).
Another aspect is related to the regime of validity of the theory, which
in classical hydrodynamics is subject to the scale separation l ≪ L, but
experiments in heavy-ion collisions suggest this bound is too strict. Indeed,
recent action-principle formulations of fluid dynamics and resummed all-order
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hydrodynamics manage to go beyond this paradigm. Finally, the symmetries
and the thermodynamic constraints, such as first and second law of ther-
modynamics, are imposed phenomenologically, while in the effective-action
approach these come directly from fundamental properties of the dissipative
effective action, which provides the theory with a strong theoretical ground.

From a theoretical perspective, there has always been a strong interest
in trying to develop field theory action-like methods (based e.g. on path
integrals) to describe dissipative systems like hydrodynamics [95–97]. While
perfect fluids and certain other non-dissipative aspects of hydrodynamics are
already captured by action-like principles [98, 99], a full discussion of the
dissipative corrections from path integral methods is still a topic of research
[49, 100–102].

In the past decade however the Schwinger-Keldysh formalism has been
successfully applied to formalize hydrodynamics (and more generally thermal
dissipative systems) from an action-like principle [43, 44, 46, 103]. This
framework is based on realizing that in order to describe thermal dissipative
systems it is necessary to recast the standard problem of statistical field theory
on a closed time path, which leads to a doubling of the hydrodynamic degrees
of freedom (advanced and retarded fields depending on which branch of the
time contour they live on). After integrating out the UV degrees of freedom
one finds a Wilsonian effective action that must obey certain constraints, such
as unitarity and the novel Z2 dynamical KMS symmetry. This construction
provides an effective action that encodes all the information related to the
constitutive relations and the conservation equations of hydrodynamics.
Furthermore, contrary to the canonical approach, this method automatically
incorporates the effects of thermal (and eventually quantum) fluctuations
at the full non-linear level, in agreement with the fluctuation-dissipation
theorem.

Fluid/gravity duality

This approach is based on the gauge/gravity duality, grounded in string theory
[104–106]. It comes in various different form, but the simplest and most
practical one, which does not make reference to quantum gravity and strings,
is that it is a duality between a strongly-coupled (large ’t Hooft coupling)
large-N quantum field theory in d dimensions living on the boundary, and
a theory of classical gravity in d+ 1 dimensions that lives in bulk Anti de
Sitter space. In particular, a black hole in the interior of AdS space gives
rise to thermodynamics in the dual boundary theory, whose temperature
and entropy are fixed by the black-hole Gibbons-Hawking temperature and
Bekenstein–Hawking entropy.

Even before the discovery of holography, after the realization that black
holes are thermal systems, it was quickly argued that the analogy is not
limited to thermal equilibrium, and works for generic hydrodynamic per-
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turbations of the event horizon, implying that black holes are dissipative
systems, which is summarized by the membrane paradigm [107]. This corre-
spondence is clearer in AdS space [108–110], in which it acts as a basis for
the fluid/gravity duality.

What holography managed to show is that the membrane paradigm
analogy actually goes beyond linear perturbations, therefore the fluid/gravity
correspondence works at the full non-linear level [27], allowing one to obtain
not only the full set of hydrodynamic correlators, but also the equations of
hydrodynamics from General Relativity, see [22–24, 111, 112] for some books
and reviews.

Holography is a powerful tool, which can be used in conjunction with hy-
drodynamics to study strongly-coupled systems from two different approaches,
and as a cross-check on the correctness of the hydrodynamic effective theory.
Historically, many interesting features of hydrodynamics (such as the effect
of anomalies on fluids, to name one) were first discovered using holographic
methods, and only subsequently obtained in hydrodynamics. Furthermore,
like kinetic theory, holographic models also provide us with the non-universal
part of the fluid description, namely the equation of state and the transport
coefficients, which can then be used to set bounds on transport coefficients,
e.g. the famous η/s ≥ 1

4π KSS bound [113].

1.4 Hydrodynamics in condensed matter

1.4.1 Overview

In conventional metals the behaviour of electrons at low temperature is
observed to be diffusive [114, 115]. They are assumed to be (almost) non-
interacting, and relax only via electron-impurity scatterings on some char-
acteristic time τei, so that a Fermi-liquid picture in terms of long-lived
quasiparticles applies. Indeed, electrons in metals are ∼ 2 Å apart, how-
ever their mean free path at room temperature is of order 104 Å, implying
a weakly-coupled phase. Furthermore, contrary to molecules in standard
fluids, electrons move in a lattice background and interact with impurities,
defects and phonons, thus losing momentum. Hence, if the sample is large
L ≫ l = vF τei with vF the Fermi velocity, and the temperature is low
Tτei ≪ 1, the system reaches a diffusive regime [116]. In terms of collective
excitations, diffusion is characterized by a single decaying mode, while fluids
also have propagating sound modes with linear dispersion relation associated
with energy and momentum conservation3. One exception, that emerges in
very clean samples for which the system is similar to the mean free path in
size, is the ballistic motion of electrons, see Figure 1.2.

3The modern point of view on hydrodynamics is that it also includes diffusion, which is
based on the same fundamental principles, only with a different set of conserved charges.
In the context of condensed matter, however, we keep the distinction.
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Scattering mechanisms in solids are characterized by mean free paths
that depend on the temperature. In conventional metals the low-temperature
regime is dominated by electron-impurity elastic scatterings, leading to the
residual resistance. On the other hand, at high temperatures usually electron-
phonon scatterings dominate, leading to a characteristic T -dependence be-
haviour of the conductivity [114]. For most materials, at any temperature
either electron-impurity or electron-phonon scatterings are dominant com-
pared to electron-electron interactions lee ≫ lei, lep, leaving no room for
hydrodynamic electronic transport.

Despite the above discussion, historically, hydrodynamics has been suc-
cessfully applied in condensed matter to study the dynamics of phonons [117]
(see [118] for experiments and references on the topic), spin waves (magnons)
[119], and more recently, based on the work by Gurzhi [117], also to electronic
systems [12, 16, 120–125], see also the reviews [126, 127].

From an experimental perspective, only recently very clean materials in
which lee ≪ lei, lep have been realized, paving the road to electron hydrody-
namics [128–137]. In particular, in 2d materials lee ∼ T−2, while acoustic
phonons interactions scale as lep ∼ T−1 and in ultra-pure samples the im-
purity scattering are rare lei ≫ lee, allowing for a parameter range with
hydrodynamic behaviour. In graphene [128, 129, 138–141], for example, the
mean free path with impurities and phonons remains very large lei, lep ≥ 1 µm
up to room temperature, while at T ≥ 150 K the electron-electron scatter-
ing has a characteristic length of lee ∼ 0.1 µm, which opens a window to
hydrodynamic transport.

More recently, nonlocal resistance [128] and violation of the Wiedemann-
Franz law [129] have been used as signatures of hydrodynamic behaviour
[139–141]. In particular, hydrodynamic flow in electronic solid state systems
should exhibit an enhanced conductivity, higher than the ballistic limit
[138, 142]. This can happen because the Sharvin limit is obtained by
assuming no electron-electron interactions in the ballistic regime, however
collective hydrodynamic motion driven by electron-electron scatterings can
overcome the ballistic bound. Recently, experiments [131, 135] employed
various imaging methods to directly observe the viscous flow of electrons in
graphene.

A different class of materials which also show hydrodynamic behaviour
are ultra-pure heterostructure semiconductors [131, 133, 137], since the first
experimental observation of the Gurzhi effect [143]. Furthermore, other
materials such as Weyl semimetals [16, 17] might exhibit fluid dynamic
behaviour [132, 144]. Finally, hydrodynamic transport is often associated
with the unusual linear-in-T dependence of the resistivity in the strange
metal phase of high-temperature superconductors [145–147].
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Figure 1.3: Left: Figure taken from [117]. Theoretical prediction of the Gurzhi effect,
with its characteristic dρ/ dT ≤ 0. Right: Figure taken from [133]. In red and blue
samples with an obstacle, in black without it, and in purple a macroscopic sample.
The blue triangles are a theoretical prediction and the solid thin line represent the
resistivity due to scatterings with acoustic phonons. Notice the negative slope for
T ≤ 40 K.

1.4.2 Gurzhi effect

The Gurzhi effect [117] is often considered a defining signature of hydrody-
namic transport in solid state systems. Consider an electric current flowing
in a thin, clean wire of metal. In this situation electrons can undergo
two different scattering processes: scatterings with the walls of the wire
(the boundaries), and electron-electron scatterings (eventually mediated by
phonons). Assume that at very low temperature the electron-electron scat-
tering length is larger than the width of the wire lee ≫ W . In this regime,
scatterings off the walls of the wire dominate, leading to a characteristic
temperature-independence of the resistivity ρlowT ∼ 1/W .

On the other hand, the electron-electron interaction is instead temper-
ature dependent, e.g. lee ∼ T−2 for direct scatterings, and lee ∼ T−5 for
phonon-mediated ones. Hence, as T increases, the electron-electron scatter-
ing length decreases, until lee ≪ W and the resistivity becomes dominated
by electron-electron interactions, leading to a dependence ρhighT ∼ lee/W

2 <
ρlowT which is smaller than the low-temperature resistivity4. This result
clearly assumes that the effective mean free path W 2/lee in the wire, is much
smaller than bulk momentum-relaxing processes, such as electron-impurities
and electron-phonon scatterings, implying that we are in the hydrodynamic
regime. As the temperature increases W 2/lee ≫ lei and a crossover between

4In terms of standard fluids, the Gurzhi effect can be understood as the electronic
realization of the crossover between Knudsen flow (particle based) and Poiseuille (viscous)
flow.
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hydrodynamics and diffusive regime happens, leading to the usual ρ(T ) de-
pendence. Thus, the Gurzhi effect identifies a minimum in the resistivity,
which decreases ρ ∼ T−2 as a function of T , and is understood as a signature
of hydrodynamic transport.

From an experimental perspective, several factors hinder the observation
of the Gurzhi effect in real metals, such as impurities and Umklapp scat-
terings, or the non-spherical shape of the Fermi surface, which contribute
to corrections to the T dependence of the resistivity, eventually washing
away its characteristic signature. Nonetheless, it was observed in [143] in
heterostructures and more recently in [133].

1.4.3 Nonlocal transport experiment

Some experiments manage to measure negative vicinity resistance [128] and
Wiedemann-Franz law violation [129] in graphene, both of which are usually
interpreted as smoking guns of hydrodynamic electronic transport in [130].

Standard transport measurements at two or four terminals are concerned
with extracting the current-voltage characteristic, thus they focus only on
the total current flowing inside the sample to obtain the resistance R. On
the contrary, nonlocal transport experiments consist in measuring the spatial
dependence of the current density in the system, by studying the voltage
drops measured from multiple gates, see Figure 1.4.

Nonlocal measurements were first intended to identify ballistic transport
in mesoscopic systems, however they have been recently argued to be possible
indicators of hydrodynamic transport [12, 120, 128, 139, 140]. In particular,
hydrodynamic flows can give rise to vortices in confined geometries, which
lead to a characteristic negative nonlocal resistance at the opposite side of
the vortex called vicinity resistance. Although this effect can be a sign of
hydrodynamic behaviour [128, 149], it can also appear in ballistic transport
[150], thus to differentiate between the two regimes one needs either to check
the temperature dependence [139] or to employ spatial imaging techniques
to directly observe the electron flow [151–153].

1.4.4 Wiedemann-Franz law violation

Unconventional charge and heat transport in hydrodynamic electronic sys-
tems leads to a violation of the Wiedemann-Franz law [114, 115]. If both
charge and heat are due to the transport of the same quasiparticles, and are
influenced by the same scattering processes (as is the case in most microscopic
models of non-interacting electrons), then the ratio between charge and heat
conductivity must be a constant

κ

σ
= LT L = L0 = π2

3e2 (1.2)
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Figure 1.4: Figure taken from [148]. Conventional four-terminals measurements
consist in having a current flow between Source S and Drain D, while recording the
voltage drop between 1 and 3 (or 2 and 4). The resistance is then RSD,13 = V13/ISD

and is related to the longitudinal resistivity ρxx = RSD,13W/L, with W and L the
width and the length of the sample, as in Figure. In nonlocal measurements, instead,
a current flows between 1 and 2, while the voltage is measured from 3 to 4. In the
case of diffusive transport the voltage drop V34 should be exponentially suppressed
R12,35 ∼ ρxxe

−L/W , but it is not in hydrodynamic transport.

where σ and κ are the electric and thermal conductivities, while L is called
Lorenz ratio and L0 is valid for free carriers. In most conventional metals
electrons are indeed weakly interacting and departures from the WF law are
usually weak. On the contrary, a strong violation of the WF law should be
regarded as due to new effects, like strongly-coupled hydrodynamic transport
[12, 14, 16].

Theory predicts a very large value of the Lorenz ratio in graphene
L ∝ τei/τee ≫ 1 in the hydrodynamic regime [12], which was indeed observed
in the graphene Dirac fluid in [129].

Signatures of electron hydrodynamics also appear in topological materials
(Dirac and Weyl semimetals) [132, 144, 154], from the observation of strong
WL law violations. In these compounds the WL law violation happens in
the opposite direction compared to graphene: now the Lorenz ratio is found
to be very small L ≪ L0, again attributed to the existence of hydrody-
namic electronic transport, which onsets at lower temperature compared to
graphene.

1.5 The content of this thesis
Hydrodynamics, as we discussed, is concerned with the dynamics of conserved
charges in closed systems. Although this can be a very good approxima-
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Figure 1.5: Left: Figure taken from [144]. Strong WL law violation in a micro-
ribbon of WP2. Center: Figure taken from [132]. Same violation in bulk crystals of
WP2. Right: Figure taken from [154]. WF law violation is observed also in MoP.

tion, real systems are rarely exactly closed and void of impurities. As a
consequence, we can expect the conservation laws of hydrodynamics to be
only approximate and, in general, to be broken by some effective relaxation
term characterized by a timescale parameter Γ ∼ 1/τ1 which dictates the
damping of fluctuations towards equilibrium. These kinds of theories are
called relaxed hydrodynamics or quasihydrodynamics.

Clearly, these corrections to the conservation equations must be small
in amplitude, for the hydrodynamic description to still be approximately
valid [50]. Physically, this corresponds to saying that whatever is ruining
the exact conservation acts on scales which are still much larger than the
microscopic mean-free-path and thermalization scale (the non-hydrodynamic
modes), so that a separation of scale is still possible, see Figure 1.6.

From a phenomenological perspective, we can expect the quark-gluon-
plasma created in heavy-ion collisions in a vacuum to be an almost perfect
fluid (the most perfect fluid [155]), with virtually no impurities, thus quasi-
hydrodynamics might have limited applicability in the context of nuclear
physics or astrophysics5. On the other hand, condensed matter systems are
in comparison much more complicated structure: the electron fluid always
moves in the presence of a background lattice and interacts with phonons,
which can degrade energy and momentum; furthermore, even clean samples
have some level of impurities and Umklapp scatterings which can disrupt the
electron flow and take away momentum [121]. The presence of boundaries
and layers can also contribute to losses of would-be conserved charges, since
the system is never perfectly closed. Finally, in many condensed matter
systems symmetries are only approximate and accidental, thus they are not
protected by any fundamental law. Consequently, the associated Noether
charges are not exactly conserved, and the conservation equations are explic-
itly weakly broken. This is the case e.g. of the emergent Lorentz symmetry

5Although there are no impurities, close to thermal critical points fluctuations become
parametrically large and the correlation length diverges, requiring a modification of
hydrodynamics to include the presence of these slow modes [51].
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Figure 1.6: Figure taken from [50]. Left: If the relaxation times for the non-
hydrodynamic modes are all comparable, then hydrodynamics dominates in the
IR and there is no quasihydrodynamics regime, since τ1 ∼ τ2. Right: On the
other hand, if there is a mode with a much larger decay time τ1 ≫ τ2, then
hydrodynamics has a reduced regime of validity, close to the origin. However,
quasihydrodynamics describes the IR physics on a wider regime, by including the
effect of non-hydrodynamic mode with parametrically small decay time τ1.

in graphene, or the chiral symmetry in Weyl semimetals, which is not exact
and broken at high quasiparticle momenta, far from the Fermi surface (the
band structure is not linear up to arbitrary high momenta).

In [39, 51, 156], but also in Chapter 3, the extra mode is assumed to be
very light and dynamical, so that it thermalizes quickly and the regime of
validity of hydrodynamics is naturally extended to include it. On the other
hand, for most of this thesis, like in [14, 49, 50, 157–160], we will assume
that the associated microscopic non-hydrodynamical mode is integrated out
and not dynamical, and its effect is that of modifying the conservation law of
some quantity with a relaxation term. Weak effective breaking of symmetries,
and momentum relaxations in particular, are also of great interest from a
holographic perspective, see e.g. [161–164] and many others.

Alternatively, another point of view is that of [50]: hydrodynamics
works on scales much larger than the mean free path l and its associated
microscopic time τ . Normally, non-hydrodynamic operators decay quickly as
⟨O(t)O(0)⟩ ∼ e−t/τ2 , and what survives the long-wavelength/long-timescale
regime is the dynamics of conserved operators. However, it can happen that
there is some operator whose decay is parametrically slower ⟨P (t)P (0)⟩ ∼
e−t/τ1 than other τ2, τ3, · · · ≪ τ1. Strictly speaking, hydrodynamics applies
only on scales τ ≳ τ1 and breaks down when τ1∂t ∼ 1. Nonetheless, because
τ1 is so much larger than the other decay rates, a separation of scales is
still possible, and we can include ⟨P ⟩ as a quasi-conserved operator, with an
effective decay time τ1, which is a valid description as long as τ2∂t ≪ 1.
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This is the main context of the thesis. In most of this work we will expand
on these ideas, trying to learn general lessons from quasihydrodynamics that
can be useful to characterize condensed matter systems in which the standard
hydrodynamic charges are not exactly conserved, but instead decay to some
fixed equilibrium value. The thesis is structured as follows.

In Chapter 2 we review the canonical approach to hydrodynamics, we
discuss how to obtain the retarded responses of fluids to external linear
perturbations, and we introduce the tool of the hydrostatic generating
functional.

Subsequently, in Chapter 3 we expand on previous works and discuss
the hydrodynamic theory of electronic Charge Density Waves in terms
of viscoelastic fluids which contains Goldstone bosons for broken spatial
translations (spontaneous and explicit breaking), while including the effects
of a strong external order-zero magnetic field and a new transport coefficient,
the lattice pressure. We study the transport properties of such fluids both
analytically from hydrodynamics, and numerically from holography, and find
a very good match in the hydrodynamic regime between the two approaches.
This work sits in the broader line of research that tries to better understand
the strange-metal strongly-coupled phase of cuprates.

Chapter 4 is devoted to constructing a theory of hydrostatic fluids in
strong external electric fields for systems in which energy and momentum
are not exactly conserved, but rather slowly relax. In particular, we find
that momentum relaxation modifies the stationary state, hence it should be
included in the hydrostatic constraints of the fluid, leading to new predictions
for the thermoelectric transport.

In Chapter 5 we introduce the concept of generalized relaxations in
linearized hydrodynamics, which are decay terms that mix the charges
(e.g. a charge fluctuation which induces energy relaxation and vice versa).
We obtain a set of very general constraints that these relaxations must
obey, based on microscopic time-reversal invariance, positivity of entropy
production and linear stability. Then, we show how to make them consistent
with curved spacetime and background gauge fields by adding new source
terms proportional to relaxations and imposing Onasger relations on the
system. This procedure thus allows us to obtain the full spectrum of retarded
correlators for the relaxed theory.

Finally, in Chapter 6 first we correct previous results in the literature
regarding the longitudinal magnetotransport of anomalous fluids, emphasizing
the importance of working at the correct derivative order for the anomaly to
appear in the conductivities. Subsequently, we use this new result to study
the transport properties of Weyl semimetals in the hydrodynamic regime.
We find that generalized relaxations are a necessary ingredient if we want
our model to satisfy basic fundamental principles (namely Onsager relations,
finite DC conductivities and electric charge conservation). However, the set
of relaxations we find consistent with the constraints above do not obey
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positivity of entropy production, implying the system is open. Furthermore,
our model predicts qualitatively different DC values for the longitudinal
thermoelectric magnetoresistance compared to older works, suggesting a
way to test the hydrodynamic regime in Weyl semimetals. To conclude,
we also introduce a mechanism to reproduce generalized relaxations from
kinetic theory, by using appropriate collision integrals with energy-dependent
Relaxation Time Approximation.

1.6 Notations
We work in natural units ℏ = c = kB = 1. Greek indexes µ, ν, . . . identify
spacetime directions, while Latin indexes i, j, . . . only the spatial ones. Latin
capital indexes I, J, . . . , mostly in Chapter 3, represent a subset of the
spatial directions. The spacetime metric is taken with signature gµν =
diag (−1, 1, . . . , 1). Vectors are indicated both in bold v or with the arrow
v⃗. In this thesis I will use both GR

ab and ⟨ϕaϕb⟩ to indicate retarded Green
functions interchangeably.

Name Acronym

Weyl semimetal WSM
Relaxation Time Approximation RTA
Direct Current DC
Alternating Current AC
Charge Density Wave CDW
Negative MagnetoResistance NMR
Partial Differential Equation PDE
Local Thermodynamic Equilibrium LTE
Anti de Sitter AdS
Wiedemann-Franz WF
Right-Hand Side RHS
Left-Hand Side LHS
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Chapter 2
Hydrodynamics and Linear
Response Theory

“Begin at the beginning”, the King said gravely, “and go on
till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

2.1 Hydrodynamics

In the previous chapter we discussed hydrodynamics in broad terms. Now
we will focus on the relativistic normal fluid (without superfluid component)
in d + 1 spacetime dimensions, which will be the pedagogical example in
this thesis. The approach presented here, however, applies to fluids with any
symmetry content (e.g. Galilean, Carrolian, boost-agnostic, . . . ). In this
review we will mostly follow [74].

2.1.1 Hydrodynamic variables

As we have already discussed, hydrodynamics is concerned with the long
wavelength dynamics of conserved charges. Following Noether’s theorem, we
know that conservation laws are a consequence of the continuous symmetries
of the fundamental theory, and this in turn implies the existence of conserved
currents. In particular here we will focus on a charged relativistic fluid,
which means we not only assume Poincaré symmetry (boosts, rotations and
translations), but also an internal U(1) symmetry, such that we also have a
conserved vector current (e.g. baryon number, electric charge, . . . ).

Symmetry under spacetime translations gives us a conserved symmetric
stress-energy tensor Tµν that couples to the external spacetime metric gµν
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and can be defined as the variation of the action with respect to the metric
[11, 165]

Tµν = 2√
−g

δS

δgµν
(2.1)

Although the stress-energy tensor obtained from Noether’s theorem is not
always symmetric, the one obtained from the above definition automatically
is. Anyway, following the Belinfante’s construction, it is always possible to
add extra antisymmetric terms to Tµν which are identically conserved and
that lead to a fully symmetric stress-energy tensor, thus we will only consider
symmetric Tµν in this work. We remark that if spin-angular momentum
is a conserved quantity relevant in hydrodynamics, one indeed needs to
consider antisymmetric corrections to the stress-energy tensor [37], however
spin hydrodynamics will not be covered in this thesis.

The conservation law for spacetime translations (or diffeomorphism in-
variance) is simply

∂µT
µν = 0 (2.2a)

We can also compute the conserved currents that correspond to the other
spacetime symmetries, namely boosts and rotations, and we obtain Mµνα =
xµT να − xνTµα, which is automatically conserved thanks to (2.2a) and the
relativistic Ward Identity Tµν = T νµ, hence there are no other conserved
quantities related to the spacetime symmetries.

We still have to discuss the internal symmetries, but for a global U(1)
symmetry this simply implies that there exists a conserved current Jµ

∂µJ
µ = 0 (2.2b)

It is also possible to introduce in hydrodynamics higher-form symmetries,
which lead to the conservation of totally antisymmetric currents with more
than one index, see for example [55, 57].

It is important to stress that (2.2b) and (2.2a) are to be understood
as non-trivial equations of motion for the conserved charges, which are
the dynamical fields in hydrodynamics. While these equations are solved
identically on shell for a given microscopic action S, in hydrodynamics they
provide the dynamical content of the theory.

It is then immediately obvious that, without further assumptions, it is
not possible to solve the conservation equations. In particular, by simply
counting the degrees of freedom, we see that a symmetric stress-energy tensor
has (d+ 1)(d+ 2)/2 components and the U(1) current has d+ 1, however
we only have d+ 1 equations from (2.2a) and one equation from (2.2b), not
enough to determine uniquely the evolution of the system.

The simplifying assumption of hydrodynamics is that we can express Tµν

and Jµ as functions of d+2 local fields, which are called hydrodynamics fields
or variables. In the context of relativistic fluid dynamics, the independent
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fields are usually taken to be: a local temperature T (x), a local chemical
potential µ(x) and a local fluid velocity, described by the four-vector uµ(x).

To better understand this choice of variable we can consider a thermal
system in the grand canonical ensemble whose equilibrium is characterized by
a density operator ρ̂ which is proportional to the exponential of the conserved
charges [166]. In our present case these are described by the four-momentum
P̂µ =

�
dΣν T̂

µν and particle number operator N̂ =
�

dΣµĴ
µ, where Σµ is

some spacelike hypersurface. Then, we can express the density operator as

ρ̂ = 1
Z
eβµP̂ µ+ΛβN̂ (2.3)

where Z = Tr eβµP̂ µ+ΛβN̂ is the partition function. We introduced two
Lagrange multipliers: a timelike vector βµ, called the thermal vector, and a
scalar Λβ , the thermal twist [47]. It is customary in relativistic hydrodynamics
to rewrite these two parameters as βµ = βuµ and Λβ = βµ in terms of a
four-velocity uµ (normalized such that u2 = −1), a chemical potential µ and
an inverse temperature β = T−1.

In hydrodynamics, we move away from the uniform equilibrium state
characterized by (2.3), and we consider temperature, chemical potential and
velocity as slowly varying functions of spacetime. The idea being that, as
the operators T̂µν and Ĵµ are always well-defined (for a given theory), their
expectation values Tµν = ⟨T̂µν⟩ and Jµ = ⟨Ĵµ⟩ can be expressed in terms of
equilibrium quantities when these vary slowly in spacetime.

We comment here that while a specific equilibrium state breaks the boost
symmetry, by picking a specific timelike vector βµ, there are many physically
equivalent equilibrium states with different spatial velocities. It is thus only
the state the breaks the symmetry, while the theory is still perfectly Lorentz
covariant. Indeed, it can be shown explicitly that the Goldstone boson
associated with the spontaneous breaking of the boost symmetry is not an
extra dynamical field, as it must be identified with the fluid velocity [167].

2.1.2 Constitutive relations

Having discussed the equations of motion, i.e. the conservation laws, and the
hydrodynamic variables, it is now time to turn to the constitutive relations.
This means that we need to write the stress-energy tensor and the U(1)
current as the most general expressions in terms of the hydrodynamic fields
compatible with the symmetries of the theory.

In the context of relativistic hydrodynamics it is useful to decompose the
stress-energy tensor and the current with respect to the timelike vector uµ,
as this allows us to work with quantities that are easily recognized as Lorentz
covariant objects. We work in flat Minkowski space ηµν = diag(−1, 1, . . . , 1)
and we define the explicitly symmetric projector orthogonal to the four-
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velocity, namely ∆µν = ηµν + uµuν .1 The decomposition takes the form [74,
168]

Tµν = Euµuν + P∆µν + 2Q(µuν) + T µν (2.4a)
Jµ = Nuµ + J µ (2.4b)

where we used the standard notation in which the brackets mean symmetrized
indices. The coefficients E , P and N are scalars, J µ and Qµ are vectors
transverse with respect to uµ (such that J µuµ = Qµuµ = 0), while T µν is a
traceless and transverse symmetric tensor.

These quantities are explicitly defined by projecting the stress-energy
tensor and current. Specifically they can be written as

E = uµuνT
µν P = 1

d
∆µνT

µν N = −uµJ
µ (2.5a)

Qµ = −∆µλuσT
λσ Jµ = ∆µνJ

ν (2.5b)

Tµν = 1
2

(
∆µλ∆νσ + ∆νλ∆µσ − 2

d
∆µν∆λσ

)
T λσ (2.5c)

This decomposition is an identity and holds for all symmetric tensors and
vectors. The hydrodynamic assumption enters when we express the coef-
ficients of (2.4) in terms of the hydrodynamic variables µ, T and uµ. In
particular, we will follow the logic of a derivative expansion, common in
EFT, by assuming that the hydrodynamic fields differ from equilibrium only
on scales much larger than the microscopic mean free path, that plays the
role of a UV cut-off. This means that first-order corrections are larger than
the second-order ones, second-order terms are larger than third, and so on.
Formally we can write

Tµν = Tµν
(0) + Tµν

(1) + Tµν
(2) + · · · + Tµν

(n) + O(∂(n+1)) (2.6a)

Jµ = Jµ
(0) + Jµ

(1) + Jµ
(2) + · · · + Jµ

(n) + O(∂(n+1)) (2.6b)

The ideal or perfect fluid contains zero derivatives, while Navier-Stokes has
one-derivative corrections.

2.1.3 Order zero: ideal fluid

Since all the transverse vectors and transverse traceless tensor we can con-
struct with µ, T , uµ and their derivatives are at least order one in gradients,
we can already recognize that the ideal fluid will have Qµ = J µ = T µν = 0.
Thus, we need to write E ,P and N in terms of the order-zero scalars, namely
our hydrodynamic variables µ and T . To make progress we notice that, in
global thermodynamic equilibrium (in the fluid rest frame), the stress-energy

1∆µν is a projector orthogonal to uµ in the sense that ∆µνuν = 0 and ∆µλ∆ν
λ = ∆µν .
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tensor and the current take a universal form, namely Tµν
RF = diag(ε, P, . . . , P )

and Jµ
RF = (n,0). These can be understood as the definitions of the equilib-

rium energy density ε, pressure P and charge density n. These expressions
are valid in the rest frame of the fluid, thus to obtain the covariant expressions
for a generic fluid moving with four-velocity uµ we simply need to perform a
Lorentz boost. The final expressions are [7, 11]

Tµν = εuµuν + P∆µν = (ε+ P )uµuν + Pηµν (2.7a)
Jµ = nuµ (2.7b)

By construction these equations hold in global thermodynamic equilibrium,
however ideal hydrodynamics simply corresponds to assuming that the
same form holds when the thermodynamic variables are promoted to slowly
varying fields in local thermal equilibrium, thus we find that for an ideal
fluid E(x) = ε(x), P(x) = P (x) and N (x) = n(x).

It is clear from this discussion that one also needs an equilibrium equation
of state P (T, µ) in order to know the explicit constitutive relations in terms
of the fundamental hydrodynamic fields. Thus, we assume that a sensible
equation of state exists, and using the thermodynamic relations [75, 169]

dP = ∂P

∂T

∣∣∣∣
µ

dT + ∂P

∂µ

∣∣∣∣
T

dµ = sdT + n dµ (2.8a)

ε = −P + Ts+ µn (2.8b)

we first define the entropy density s and the charge density from the
Gibbs–Duhem equation and subsequently the energy density via the Euler
relation.

It is possible to combine the longitudinal component of (2.2a), namely
uµ∂µT

µν = 0, together with the equation of motion for the current (2.2b),
expressed for the constitutive relations of an ideal fluid (2.7) to obtain

∂µ (suµ) = 0 (2.9)

The term in the bracket is interpreted as the ideal fluid entropy current and
this equation tells us that, for a perfect fluid, entropy is locally conserved
and therefore ideal hydrodynamics is non-dissipative.

2.1.4 Frame choice

Before discussing first-order corrections to the perfect fluid, leading to the
so-called relativistic Navier-Stokes equations, we must first deal with a
problem that appears in all EFT constructions, related to redefinitions of
the fundamental fields used to perform the gradient expansion.

Specifically, at order one in derivatives we can redefine the hydrodynamic
variables in terms of order-one quantities that vanish in equilibrium, so that
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different definitions match in global thermodynamic equilibrium, when the
gradients are zero. A specific definition of the fields T , µ and uµ is usually
called a frame choice. Physically this is due to the fact that there is no
microscopic definition of the hydrodynamic fields when out of equilibrium, e.g.
there is no temperature operator whose expectation value would give us T (x)
for out-of-equilibrium states. The correct way to think about the constitutive
relations is to consider T (x), µ(x) and uµ(x) as auxiliary parameters used
to parametrize Tµν and Jµ, which do have a microscopic out-of-equilibrium
definition. A change of frame may redefine the hydrodynamic fields, but
will not change the expectation value of stress-energy tensor and the current
(only how they appear in terms of the local variables) [25, 170].

From an EFT perspective, it is natural to have the freedom to redefine
fields that differ by derivative quantities, and this is indeed the case that
appears when discussing EFT approach for dissipative systems [44, 171].
Since frame choice are just a redundancy of the theory, they can be interpreted
as gauge-like transformation [172]. Furthermore, exactly like gauge theories,
they can be recast in a gauge invariant manner, meaning that it is possible
to develop a theory of hydrodynamics without fixing a frame, only in terms
of frame invariant scalars and vectors [25].

Formally, this means that the coefficients E ,P and N take the generic
form

E = ε(T, µ) + fE(∂T, ∂µ, ∂u) (2.10a)
P = p(T, µ) + fP(∂, ∂µ, ∂u) (2.10b)
N = n(T, µ) + fN (∂, ∂µ, ∂u) (2.10c)

where the first terms are obtained by the equilibrium equation of state,
as discussed in Section 2.1.3, while the fs depends on the gradients of
the hydrodynamic variables and are specified by our choice of the out-of-
equilibrium definitions of local temperature, chemical potential and fluid
velocity.

Consider now a generic frame transformation

T (x) −→ T ′(x) = T (x) + δT (x) (2.11a)
µ(x) −→ µ′(x) = µ(x) + δµ(x) (2.11b)
uµ(x) −→ u′µ(x) = uµ(x) + δuµ(x) (2.11c)

where the δ represent first-order correction2. One can use the new definition
of uµ to decompose the stress-energy tensor and the current as in (2.5),
remembering that Tµν and Jµ are invariant under frame choice and that
Qµ and J µ are themselves order one in derivatives, to determine how the

2Notice that δuµ is a transverse vector, such that uµδuµ = 0. This is needed in
order to preserve the normalization of the four-velocity at the given order in derivatives
u2 = −1 + O(∂2).
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coefficients of the decomposition vary under a frame transformation. The
result is

δE = 0 δP = 0 δN = 0 (2.12a)
δQµ = −(E + P)δuµ δJ µ = −N δuµ (2.12b)
δT µν = 0 (2.12c)

From these expressions it is immediately clear that one can always pick δuµ

such that J µ = 0 or Qµ = 0. The first case is often called Eckart frame [11,
168], while the second choice is called Landau frame [7].

While frames are not physical in the hydrodynamic regime, they are
simply understood as redefinitions of the fields we use to parametrize the
observable quantities Tµν and Jµ, they can still have a physical interpretation.
In particular the Eckart frame is defined so that there is no charge flow in
the local rest frame of the fluid, while the Landau frame is such that there is
no energy current in the local rest frame of the fluid. There are in principle
infinite frames, however in practice only a handful of these are really used
in the literature. In particular two very useful ones are the thermodynamic
frame [98], which is actually a class of frame that we will discuss later on,
and the recently introduced BDNK frame [69, 71].

The first equation in (2.12) implies that ε(T, µ) + fE(∂T, ∂µ, ∂u) =
ε(T ′, µ′) + f ′

E(∂T ′, ∂µ′, ∂u′) and similar expressions hold also for N and P.
This means that we can write

f ′
E = fE −

(
∂ε

∂T

)
µ
δT −

(
∂ε

∂µ

)
T

δµ (2.13a)

f ′
P = fP −

(
∂p

∂T

)
µ
δT −

(
∂p

∂µ

)
T

δµ (2.13b)

f ′
N = fN −

(
∂n

∂T

)
µ
δT −

(
∂n

∂µ

)
T

δµ (2.13c)

to relate the primed functions in terms of the old ones plus the frame
choice derivative corrections. In particular, we can always pick the out-of-
equilibrium definition of µ and T such that two of the three functions f are
zero. It is standard to set to zero f ′

E and f ′
N , such that E = ε and N = n at

all orders in derivatives.

2.1.5 Order one: Navier-Stokes

The ideal fluid we have discussed so far, however, predicts unphysical so-
lutions: if we only consider the constitutive relations truncated at order
zero in derivatives, then we find solutions to the conservation equations of
hydrodynamics that describe impossible flows. For example, an equilibrated
fluid flowing in the x direction with a velocity gradient along y is a valid
solution to the ideal fluid hydrodynamic equations, but it is unphysical in
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Figure 2.1: Figure taken from [74].

actual systems, since fluid particles will transfer momentum between the
fluid layers and render the flow homogeneous, see Figure 2.1. Hence, it is
imperative to study the first-order dissipative corrections, for which such
flows are not equilibrium solutions.

We will work in the Landau frame, i.e. we will choose the out-of-
equilibrium definition of uµ to be such that Qµ = 0 and furthermore we also
fix the definitions of µ and T in such a way that E = ε and N = n. The
Landau frame matching conditions are usually written as

uµT
µν = −εuν uµJ

µ = −n (2.14)

so that the fluid velocity is an eigenvector of the stress-energy tensor with
the energy as eigenvalue.

Following the hydrodynamic EFT prescription, we write the free coeffi-
cients P, J µ, T µν (those that are not fixed by the choice of the frame) as
the most general expressions in terms of the derivatives of the fundamental
fields. There are only three one-derivative scalars at this order, namely the
matter derivative of temperature and chemical potential uα∂αT , uα∂αµ and
the expansion θ = ∂αu

α. There are furthermore three transverse vectors
∆µν∂νT , ∆µν∂νµ and ∆µνaν where aµ = uα∂αuµ is the acceleration. To
conclude, there is only one traceless symmetric order-one tensor we can build,
the shear tensor

σµν = ∆µα∆νβ
(
∂αuβ + ∂βuα − 2

d
ηαβ∂λu

λ
)

(2.15)

Let us focus on the scalar part first. We already fixed E and N from
the Landau matching conditions, so we only have one scalar left, P, which
should be written as the most generic expression in terms of the order-zero
and order-one scalars listed above.

P = P + c1u
α∂αT + c2u

α∂αµ+ c3θ + O(∂2) (2.16)
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However, we remember that hydrodynamics should be understood as a formal
series, and by using the ideal fluid constitutive relations (2.7) in the two
scalars equations ∂µJ

µ = 0 and uµ∂νT
µν = 0 we find two equations that relate

the three order-one scalars. This means that, e.g. uα∂αT is proportional
to uα∂αµ, up to corrections that are higher order in derivatives O(∂2), and
the same holds for the expansion. Thus, at order one in derivatives there
is only one independent scalar, and it is a convention to keep ∂µu

µ as the
independent one. We can finally write down P as the order-zero term plus
the first-order correction

P = P − ζ∂µu
µ + O(∂2) (2.17)

where ζ = ζ(T, µ), the bulk viscosity, is the first transport coefficient we
encounter.

We now turn to the only transverse vector left unspecified, namely J µ. As
before, there are three transverse vectors at order one in derivatives, however
we also have one transverse ideal-fluid equation of motion, ∆µν∂αT

αν = 0.
This relates the three order-one vectors up to higher-order corrections, which
again means we only have two independent terms. Thus, we write

J µ = −σT∆µν∂ν
µ

T
+ χT ∆µν∂νT + O(∂2) (2.18)

where we reorganized the vectors in a way that will be useful later on. For
each term we introduced a new transport coefficient: the charge conductivity
σ and χT .

To end our discussion, we observe that since the shear tensor (2.15) is
the only transverse traceless symmetric tensor, it must be proportional to
T µν , hence we write

T µν = −ησµν + O(∂2) (2.19)
where η, the shear viscosity, is the last transport coefficient that appears in
standard relativistic hydrodynamics.

Had we chosen Eckart frame, we would have found the same expressions
for T µν and P, instead what we wrote for J µ would now appear for Qµ.
Notice that there are actually two ambiguity in hydrodynamics: one is related
to the choice of frame (in this case, Eckart or Landau), while the other is
related to fixing the base of independent coefficients used to write the consti-
tutive relations. For example, we have decided not to use the acceleration in
writing the constitutive relation for J µ, however when working in the Eckart
frame it is more common to use the acceleration instead of ∆µν∂ν

µ
T . This

choice might seem innocuous, however one must be careful when computing
quantities in hydrodynamics to check that they are independent of these
ambiguities by working at the correct derivative order [74].

A comment on transport coefficients: these are quantities which cannot
be determined from hydrodynamics alone3, since they depend on the micro-

3This is not true for certain transport coefficients related to quantum anomalies [34].

31



Chapter 2. Hydrodynamics and Linear Response Theory

scopic details of the theory, while hydrodynamics knows only about the IR
macroscopic dynamics. Given a specific microscopic model one can compute
these coefficients via Kubo formulae (at least in principle), however from
the point of view of hydrodynamics they are just unknown functions of the
scalar fields.

The Kubo formulae are independent of the choice of the frame and can
be used to match the microscopic theory to the EFT of hydrodynamics. This
means that the transport coefficients are frame invariant: they can appear
in different places in the constitutive relations, depending on the choice of
the frame, but their form in terms of the microscopic theory is unique and
independent this choice.

2.1.6 Entropy current

The constitutive relations we obtained above are based only on two consis-
tency requirements: Lorentz covariance and the formal derivative expansion.
Hydrodynamics however requires more conditions, in particular when de-
veloping a theory of hydrodynamics one also imposes a local version of the
second law of thermodynamics, namely we will require that the production
of entropy is locally positive. Later on we will also discuss one last kind of
constraint that stems from the discrete symmetries of the microscopic theory.

In equilibrium, we can write the entropy current Sµ = suµ for constant uµ,
and we showed that the ideal fluid does not produce entropy ∂µ(suµ) = 0. In
first-order hydrodynamics we assume that Sµ receives derivative corrections,
consistent with what we would expect by covariantizing the thermodynamics.
In particular, we start from the Euler relation Ts = P + ε − µn, and we
write it in a covariant form [166, 168]

TSµ = Puµ − Tµνuν − µJµ (2.20)

From this expression, using the standard decomposition (2.4), we obtain for
the entropy current

Sµ =
[
s+ 1

T
(E − ε) − µ

T
(N − n)

]
uµ + 1

T
Qµ − µ

T
J µ (2.21)

where the terms inside the square brackets is the rest frame entropy density,
while the other two terms represent the rest frame entropy flow. This
is the so-called canonical entropy current, and it is frame invariant (as
always, the explicit form of the current in terms of the gradients may vary
depending on the frame, but the value of the current does not). There are
other contributions to the entropy current, called non-canonical, which have
important roles when discussing hydrostatic or non-dissipative fluids.

In the specific case of the Landau frame the entropy current simplifies to
[7, 14, 74]

Sµ = suµ − µ

T
J ν (2.22)
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We must now use this expression, together with the Landau-frame constitutive
relations, to impose the local form of the second law of thermodynamics

∂µS
µ ≥ 0 (2.23)

on all possible flows that are solutions to the equations of motion (2.2a) and
(2.2b).

The steps are very straightforward, using the Gibbs–Duhem equation
∂P = s∂T + n∂µ one arrives at

∂µS
µ = ζ

T
θ2 + η

T
σµνσ

µν + σ

(
T∆µν∂ν

µ

T

)2
− TχT ∆µν∂ν

µ

T
∂µT ≥ 0 (2.24)

where we remind that θ is the expansion and σµν the shear tensor. Because
the RHS must always be non-negative, we immediately find that

η ≥ 0 ζ ≥ 0 σ0 ≥ 0 χT = 0 (2.25)

Hence, while Lorentz covariance leaves us with four transport coefficients at
first order in derivatives for relativistic hydrodynamics, positivity of entropy
production reduces this number to only three.

For future reference, we write here the complete first-order constitutive
relations in the Landau frame for a normal fluid that stem from the require-
ment of Lorentz covariance, gradient expansion and positivity of entropy
production. They are

Tµν = εuµuν + P∆µν − ησµν − ζ∆µν∂λu
λ + O(∂2) (2.26a)

Jµ = nuµ − σT∆µν∂ν
µ

T
+ O(∂2) (2.26b)

There is a slightly different route to arrive at the same constitutive
relations that is sometimes quicker: after fixing the frame one can skip
completely the steps in Section 2.1.5 and instead compute directly the
divergence of the canonical entropy current. Then, by looking at the final
expression, one can infer the form of the constitutive relations. This is the
approach used e.g. in [7].

2.1.7 Hydrostatic generating functional

The hydrostatic generating functional [98, 99] is a powerful technique that
can be used to compute the n-point functions (hence also the constitutive
relations) from a path-integral approach in the hydrostatic regime, i.e. when
everything is time independent and, in the absence of external sources,
constant.

The hydrostatic flow, together with the dissipative sector described in the
previous Section 2.1.5 on Navier-Stokes fluids, are two of the eight possible
class of fluid transport classified in [47, 48] using the idea of adiabatic flows.
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Consider a charged fluid in the presence of spacetime and gauge sources
(2.58). The fluid is defined to be in (time-independent) hydrostatic equi-
librium if there exists a timelike Killing vector V µ that parametrizes time-
translations such that all the thermodynamic quantities and the external
sources have zero Lie derivative LV with respect to the Killing field V µ.
Physically, this means that the sources are slowly varying and that the time
derivative in the frame comoving with V µ, when V µ = (1,0), is zero.

Because we are dealing with equilibrium configurations (in the presence
of sources that are adiabatically turned on) we can formally obtain the Green
functions from a generating functional by differentiating with respect to the
sources gµν and Aµ.

In the frame where V µ = (1,0), consider the set of zero-frequency n-point
functions truncated up to order m in powers of the wavevector k. We can
inverse-Fourier transform to obtain a set of correlators in position space which
are approximately valid on scales much larger than the microscopic correlation
length of the system. By formally integrating this set of approximate Green
functions we arrive to the equilibrium generating functional for the truncated
correlators that is a local function of the sources

Wm[g,A] =
�

ddx W[sources(x)] (2.27)

where the function W contains terms up to order m in derivatives. Because
this expression is covariant, it holds also for frames which are not comoving
with V µ.

In order for Wm to reproduce the equations of motion (2.58) it must
be diffeomorphism and gauge invariant, hence W is a function of all the
possible diffeomorphism and gauge invariant scalars of the theory. These
scalar observables should be local in space, but can be non-local in Euclidean
time, in order to describe finite temperature systems.

Consider then the two quantities: the invariant length L of the time circle
in the Euclidean theory and the Polyakov loop PA of the gauge field U(1)
around the same direction. The length L can be computed simply as

L =
� β

0
dτ√

gττ (2.28)

in the frame comoving with V µ, where β = T−1
0 is the period of the coordinate

in the time direction. Then, covariantizing the expression and rotating back
to real time, we find that L and PA are written as

L = β
√

−V 2 lnPA = βV µAµ (2.29)

We can now identify the temperature, chemical potential and fluid velocity
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from these invariant quantities as

T = 1
L

= T0√
−V 2

(2.30a)

µ = lnPA

L
= V µAµ − Λβ√

−V 2
(2.30b)

uµ = V µ

√
−V 2

(2.30c)

where Λβ is a gauge parameter that must be included to preserve gauge
invariance. These expressions can be understood as the thermal twist and
thermal vector, in the presence of sources, that appear in the equilibrium
statistical mechanics perspective introduced in (2.3). Notice that, contrary
to (2.3), these expressions for T , µ and uµ have a dependence on spacetime
coordinates inherited from the sources gµν and Aµ.

For a given derivative order m the theory has Nm scalars quantities
sm,1, sm,2, . . . , sm,Nm constructed from the invariants (2.30) and their deriva-
tives. Therefore, the most general hydrostatic generating functional at order
m takes the form

Wm[g,A] =
�

ddx
√

−g
[
P (s0) +

m∑
n=1

Nn∑
i=1

Fn,i(s0)sn,i

]
(2.31)

In this expression: s0 are the order-zero scalars and for a simple fluid they
are s0 = {T, µ}, Fn,i are unknown functions of the order-zero scalars, while
P can be identified with the pressure. Indeed, at zero sources, when all the
derivative corrections to Wm vanish, the functional W corresponds to the
free energy.

Given this expression we can now compute the hydrostatic constitutive
relations for the stress-energy tensor and the current, the one-point functions,
by varying Wm with respect to the metric and gauge field respectively

⟨Tµν⟩ = 2√
−g

δWm

δgµν
⟨Jµ⟩ = 1√

−g
δWm

δAµ
(2.32)

Thanks to the requirement of gauge and diffeomorphism invariance of Wm

the hydrostatic constitutive relations obtain from the above variations will
identically satisfy the hydrodynamic equations of motion.

The constitutive relations obtained from the hydrostatic generating func-
tional appear in a specific hydrodynamic frame called thermodynamic frame.
Contrary to the Landau frame, defined by the matching conditions (2.14), the
thermodynamic frame physically means that the definitions of temperature,
chemical potential and fluid velocity are not modified on shell with respect
to their equilibrium value (2.30). Notice that, while it is common to use
the term thermodynamic frame, this is not a true frame, but rather a class
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of frame. This is because the thermodynamic frame, by definition, is a
prescription for how to deal with the hydrostatic sector of the constitutive
relations, but it says nothing about the dissipative parts, for which one needs
further frame fixing conditions.

One might also wonder what happens to the entropy current in the
hydrostatic sector. The hydrostatic solutions are, as expected, non-dissipative,
hence ∂µS

µ = 0, however in order to achieve this results the entropy current
itself must be modified compared to its canonical value. The total entropy
current is

Sµ = Sµ
c. + Sµ

n.c. (2.33)

where the first term is the canonical entropy current discussed in (2.21),
while the latter is the so-called non-canonical entropy current and its role is
to ensure that the hydrostatic derivative corrections do not produce entropy
[173, 174].

2.1.8 Hydrostatic conditions

For the fluid to be in hydrostatic flows, its variables must obey certain
conditions which in a sense define equilibrium. These constraints are obtained
by requiring that the Lie derivatives of the sources and of the thermodynamic
quantities (2.30) with respect to the Killing vector V µ vanish. To proceed,
we first decompose the U(1) electromagnetic field strength by projecting
along the fluid velocity in (3 + 1)-dimensions

Fµν = uµEν − uνEµ − ϵµνρσu
ρBσ (2.34)

where we defined the covariant electric and magnetic fields as

Eµ = Fµνu
ν Bµ = −1

2ϵ
µναβuνFαβ (2.35)

Notice that both Eµ and Bµ are transverse to uµ. Then, requiring LV T =
LV µ = 0 give use the first two hydrostatic constraints [98]

∂µT = −Taµ (2.36a)
∂µµ = Eµ − µaµ (2.36b)

where aµ = uλ∇λu
µ is the acceleration. The other constraints come from

studying the Lie derivative of the fluid velocity, for which we find that an
equilibrium fluid must have vanishing expansion and shear tensor

θ = ∇µu
µ = 0 σµν = 0 (2.36c)

Finally, we will require the Bianchi identity of the gauge field, ϵµναβ∇νFαβ =
0.
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These are equality-type constraints that the fluid variables must obey for
the fluid to be in equilibrium in the presence of external sources. In particular,
any dissipative correction to the constitutive relations must be understood
as fluctuating away from these constraints. For example, in equilibrium we
find that the fluid must have zero expansion θ = 0, which agrees with the
fact that the bulk viscosity is a dissipative transport coefficient and the fluid
produce entropy when expansion is not zero. For the vector sector, second
law of thermodynamics tells us that the two constraints (2.36) do not give
rise to two independent dissipative transport coefficients, but to a single
dissipative transverse vector

Eµ − ∆µν∂ν
µ

T
= 0 (2.37)

that appears in the current constitutive relation (2.61).
Notice that the opposite is not true: there exist transport coefficients

which are non-dissipative (they drop out of the equation when computing the
positivity of entropy production), but nonetheless they vanish on hydrostatic
flows. These are called non-dissipative non-hydrostatic terms and can be
obtained from a generalization of the above generating functional [47].

2.2 Linear Response Theory
Hydrodynamics is a highly non-linear theory, meaning that small differences
in the initial conditions can lead to drastically different evolutions of the fluid
dynamics. This makes solving the full non-linear equations of hydrodynamics
notoriously hard, with entire careers dedicated to numerically solving fluid
flows.

As we discussed in the introduction, the problems that appear in hydro-
dynamics are often related to trusting the theory far beyond its regime of
validity. Hydrodynamics is a low-energy EFT that works only when ω and k
are small, nonetheless if one wishes to use the equations of hydrodynamics
as a system of non-linear PDEs with predictive power, one needs to solve
the equations even at high momenta, when we expect hydrodynamics to fail.

Things are instead better behaved if we focus on linearized hydrodynamics.
This means that we trust the theory only in its regime of validity: we consider
a uniform global thermodynamic equilibrium state given by a constant
temperature T = const, chemical potential µ = const and in the rest frame
uµ = (1,0) and study the small fluctuations above this solution. Furthermore,
we will only care about the small-wavevector/small-frequency expansion,
which is where hydrodynamics is expected to hold.

Linearized hydrodynamics still gives plenty of information, in particular:
(i) it gives access to the retarded correlators, which can then be matched
against the same two-point functions obtained from other approaches (holog-
raphy, kinetic theory, QFT, . . . ), leading to the Kubo formulae, (ii) the
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same correlators give physical information about the transport properties of
the system, like the thermoelectric conductivities, (iii) it allows us to find
new constraints on the constitutive relations from the microscopic discrete
symmetries, and (iv) it gives information about the stability of the theory to
small perturbations.

For most of this section instead of working with T , µ and uµ we will
consider their thermodynamically conjugate charges as independent variables,
namely energy, charge and momentum density. The only reason to do so is
that the latter quantities have a microscopic definition in terms of operators
T̂ 0µ and Ĵ0, which allows us to study how they appear in the Hamiltonian
and obtain the correlators associated to these charges.

2.2.1 Martin-Kadanoff method

In this section we will quickly resume the main idea behind linear response
theory, that is to describe the response of a system in thermal equilibrium
to small perturbations, based on the classical paper by Martin and Kadanoff
[175] from which this method takes its name. We consider a set of hydrody-
namic fields ϕa(t,x) (that are microscopically well-defined) and we couple
them to their (weak slowly-varying) sources λa(t,x). The sources are turned
on at t = −∞ and are adiabatically increased; at t = 0 they are turned off
and the system is let free to evolve. In linearized hydrodynamics the classical
fields ϕa are described by a set of linear equations that, in momentum space,
read4

∂tϕa(t,k) +Mab(k)ϕb(t,k) = 0 (2.38)

where Mab is a matrix determined by the conservation laws of hydrodynamics
and the constitutive relations. This set of equations is valid in the hydro-
dynamic regime (long wavelength k → 0 and small frequency ω → 0), and
describes the free evolution of the fields at t > 0. To study the solutions we
perform a Laplace transform in time

ϕa(z,k) =
� ∞

0
dt eiztϕa(t,k) (2.39)

with z that has to lie on the upper half of the complex plane for the integral
to converge. Transforming the set of equation we find

(−izδab +Mab)ϕb(z,k) = ϕ0
a(k) (2.40)

where we defined ϕ0
a(k) = ϕa(t = 0,k), the value of the field just when the

source is turned off. The values at t = 0 of the hydrodynamic variables are
related to the initial values of the sources, that is just before we turn the

4Here the fields ϕa whose dynamics is described by linearized hydrodynamics are actually
δϕa, that is the difference with respect to the equilibrium δϕa(t, x) = ϕa(t, x) − ϕa.
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sources off we have a relation that is local in space. For small fluctuations
we can write

ϕ0
a(k → 0) = χabλ

0
b(k → 0) =⇒ χab =

(
∂ϕa

∂λb

)
(2.41)

χab is called static thermodynamic susceptibility, it is not a dynamical
response, but rather a thermodynamic quantity that depends on the system.
With this definition the hydrodynamic equations can be formally solved in
terms of the initial conditions

ϕa(z,k) = (K−1)abχbcλ
0
c(k) (2.42)

with Kab = −izδab +Mab(k).
We now try to relate the expectation values of the hydrodynamic fields to

the correlation functions of the system. Imagine perturbing the fields using
slowly-varying (with respect to both x and t) sources that are adiabatically
turned on at t = −∞ and then switched off at t = 0, for example with
λ(t,x) = eϵtλ0(x)θ(−t) (ϵ > 0 is a small adiabatic parameter and θ(t) is the
step function); we can then link the evolution of the system at t > 0 to the
result we found in equation (2.42). To do so we perturb the Hamiltonian
with a term that couples the hydrodynamic fields to their sources

δĤ(t) = −
�

ddx λa(t,x)ϕ̂a(t,x) (2.43)

From first-order time-dependent perturbation theory in Quantum Mechanics
we can find the response of an operator ϕ̂a(t,x) in the Heisenberg picture.
If the system has a time-independent Hamiltonian, and we add the small
perturbation above the expected value of the observable changes as

δ⟨ϕ̂a(t,x)⟩ = −i
� t

−∞
dt′⟨[ϕ̂a(t,x), δĤ(t′)]⟩ (2.44)

where ⟨. . . ⟩ stands for the thermal average ⟨Ô⟩ = Tr(ρ̂Ô) with ρ̂ the density
matrix (we work in the grand canonical ensemble, so the Heisenberg operators
are defined with the Hamiltonian Ĥ ′ = Ĥ − µN̂ , with the chemical potential
µ as the Lagrange multiplier of the charge number operator N̂). Plugging
together the two equations we find

δ⟨ϕ̂a(t,x)⟩ = −
� ∞

−∞
dt′

�
ddx′ GR

ab(t− t′,x − x′)λb(t,x) (2.45)

where GR
ab is called retarded response function, and it is defined as

GR
ab(t− t′,x − x′) = −iθ(t− t′)⟨[ϕ̂a(t,x), ϕ̂b(t′,x′)]⟩ (2.46)
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It depends only on the differences of the coordinates, due to its invariance
under spacetime translations. In Fourier space the expectation value simplifies
and the convolution gives

δ⟨ϕ̂a(ω,k)⟩ = −GR
ab(ω,k)λb(ω,k) (2.47)

We still have to Laplace-Fourier transform equation (2.45) to link this result
with the one obtained from linearized hydrodynamics.

We start by performing the Fourier transform in space; with our assump-
tion on the form of the sources we find

⟨ϕ̂a(t,k)⟩ = −
� 0

−∞
dt′eϵt′

GR
ab(t− t′,k)λ0

b(k) (2.48)

We now Fourier transform only the retarded function in time

GR(t− t′,k) =
� ∞

−∞

dω
2πG

R(ω,k)e−iω(t−t′) (2.49)

Because of the step function in the definition of GR(t,k), this function is
identically zero for t < 0, this in turn means that GR(ω,k) is an analytic
function in the upper half-plane of complex ω, and we are free to analytically
continue GR(ω,k) to the whole plane. After performing the t′ integral we
are left with

⟨ϕ̂a(t,k)⟩ = −λ0
b(k)

� dω
2πG

R
ab(ω,k) e

−iωt

iω + ϵ
(2.50)

where ϵ is needed for the convergence of the integral. We can now multiply
both sides by eizt (with the prescription that Im(z) > 0 for the integral
to convergence) and integrate over t from 0 to ∞ (that is, we perform the
same Laplace transform we applied earlier to our linearized hydrodynamic
equations)

⟨ϕ̂a(z,k)⟩ = −λ0
b(k)

� dω
2π

GR
ab(ω,k)

(iω + ϵ)(i(ω − z) + ϵ) (2.51)

As we mentioned, GR(ω) is analytic in the upper half-plane, this allows us
to perform the integral by closing the contour with Im(ω) > 0. There are
two poles inside the region, one at ω = iϵ and one at ω = z+ iϵ. The residue
theorem gives us

⟨ϕ̂a(z,k)⟩ = −λ0
b(k)G

R
ab(z,k) −GR

ab(z = 0,k)
iz

(2.52)

where the argument z = 0 is meant to be taken slightly above the real axis.
We still need to find what GR(z = 0,k) is, so we look at equation (2.48)
evaluated at t = 0. The argument of the integral is the Laplace transform
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evaluated at z = 0 (it is again meant to be slightly above the real axis, from
z = iϵ).

⟨ϕ̂a(t = 0,k)⟩ = −
� ∞

0
dt′ e−ϵt′

GR
ab(t′,k)λ0

b(k) = −GR
ab(z = 0,k)λ0

b(k)

(2.53)
From this equation we find that, in the long wavelength limit, GR(z = 0,k)
is minus the static susceptibility χ(k) defined above (2.41), GR(z = 0,k) =
−χ(k).

We can finally compare this result with our earlier expression from
linearized hydrodynamics obtaining

− 1
iz

(
GR

ab(z,k) + χab(k)
)
λ0

b(k) = (K−1)acχcbλ
0
b(k) (2.54)

and we find an expression for the retarded response function matrix

GR
ab(z,k) = −(δac + iz(K−1)ac)χcb (2.55)

This function is always analytic in the upper half-plane of complex z,
hence we can define GR(ω,k) in the whole complex plane as the analytical
continuation of GR(z,k) from the upper half-plane. GR has many ana-
lytic properties and can be related to other Green functions (advanced and
symmetric) [74], in particular it is possible to show that

−ℑGR
aa(ω,k) ≥ 0 for ω ≥ 0 (2.56)

This result, when applied to the hydrodynamic response functions, implies
that the transport coefficients are all non-negative: σ ≥ 0, ζ ≥ 0 and η ≥ 0,
without the need to define an entropy current.

2.2.2 Variational method

In the previous section we presented the classical approach to compute
the retarded Green functions from hydrodynamics using linear response
theory, by introducing sources for the conserved charge densities that follow
from equilibrium thermodynamics. This method has the advantage of being
very transparent from a physical perspective, however it has a couple of
drawbacks, the most important one being that it is not possible to obtain all
the correlators associated with the currents [68, 74].

There is a second method to obtain the same quantities from a field theory
perspective, which introduces sources that couple directly to the covariant
form of the currents Tµν and Jµ. Given a generic theory we can always add
to it external sources, in particular we will consider a curved metric gµν and
a gauge field Aµ. Then we can formally construct a generating functional
W [A, g] whose variations give us all the connected n-point functions of the
theory.
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By definition, varying with respect to the metric or the gauge field gives
us the one-point functions associated with the stress-energy tensor and the
current

δW [A, g] =
�

dx
√

−g (Tµνδgµν + JµδAµ) (2.57)

Furthermore, when the metric and gauge fields variations are associated to
diffeomorphism or gauge symmetry, the invariance of W [A, g] under these
operations gives us the conservation equations of hydrodynamics (assuming
there are no anomalies)

∇µT
µν = F νλJλ (2.58a)

∇µJ
µ = 0 (2.58b)

These are the obvious generalization of (2.2a) and (2.2b) in the presence of
external curvature and electromagnetic fields.

Although in hydrodynamics we do not have access to a microscopic
generating functional for the full dissipative theory, we can still construct
the generators of the retarded Green functions in the presence of background
sources as

T µν [A, g] =
√

−g⟨T̂µν⟩ J µ[A, g] =
√

−g⟨Ĵµ⟩ (2.59)

where ⟨T̂µν⟩ and ⟨Ĵµ⟩ are the solutions to the equations of hydrodynamics in
the presence of non-trivial Aµ and gµν . Finally, we can obtain the equilibrium
correlators at zero sources as

GR
JµJν (x) = −δJ µ(x)

δAν(0)

∣∣∣∣
A=h=0

GR
T µνJσ (x) = −δT µν(x)

δAσ(0)

∣∣∣∣
A=h=0

(2.60a)

GR
JσT µν (x) = −2 δJ

σ(x)
δhµν(0)

∣∣∣∣
A=h=0

GR
T µνT σρ(x) = −2δT

µν(x)
δhρσ(0)

∣∣∣∣
A=h=0

(2.60b)

where we defined the metric fluctuation as hµν = gµν − ηµν .
The way to compute these quantities is as follows: the constitutive

relations in the presence of background sources in the Landau frame, at order
one in derivatives, are

Tµν = εuµuν + P∆µν+

− η∆µα∆νβ
(

∇αuβ + ∇βuα − 2
d
gαβ∇λu

λ
)

− ζ∆µν∇λu
λ

Jµ = nuµ + σ

(
Eµ − T∆µν∇ν

µ

T

)
(2.61)

where Eµ = Fµνu
ν is the covariant electric field and appears naturally from

the study of the entropy current in the presence of sources. Then we can
solve the equations of hydrodynamics in Fourier space by linearizing around
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global thermodynamic equilibrium with T = const, µ = const and uµ = (1,0)
in the presence of small fluctuating sources δAµ and δhµν . Inserting the
result in the generators (2.59) and taking the functional derivatives (2.60)
gives access to all the Green functions of the theory.

The Green functions obtained by this approach might differ from the
ones obtain via Martin-Kadanoff by contact terms that appear because of
the

√
−g term in the generators (2.59), see [176].

2.2.3 Discrete symmetries: Onsager relations

The retarded functions have to be consistent with the symmetries of the
theory, in particular time-reversal turns out to impose powerful constraints on
the transport coefficients. Consider a Hermitian field ϕ̂a(t,x) that transform
under time reversal as Θ̂ϕ̂a(t,x)Θ̂−1 = ηaϕ̂a(−t,x), where Θ̂ is the anti-
unitary time-reversal operator and ηa = ±1 is the eigenvalue of ϕ̂a. If the
microscopic system is time-reversal invariant, such that [Ĥ, Θ̂] = 0, then the
retarded response functions must obey

GR
ab(t,x) = GR

ba(t,−x)ηaηb (2.62)

On the other hand, if time-reversal is not a symmetry of the microscopic
system, for example if there is an external magnetic field B that breaks the
symmetry, the Hamiltonian satisfies Θ̂Ĥ(B)Θ̂−1 = Ĥ(−B). Then the above
equation is modified to

GR
ab(ω,k;B) = ηaηbG

R
ba(ω,−k; −B) (2.63)

This equation is at the core of the so-called Onsager reciprocal relations [177,
178], although older works use an approach based on thermodynamics and
the relations between fluxes and forces [75, 169].

This condition on GR imposed by time-reversal is not automatically
satisfied by linearized hydrodynamics, instead it should be interpreted as
a constraint on the possible terms in the constitutive equations: in the
limit k → 0, at ω = 0, this condition implies that χT = 0 in first-order
hydrodynamics (2.18). This is another way to constraint the transport
coefficients without resorting to the entropy current.

From (2.55) and (2.63) it follows that the matrix Mab must obey the
following condition

χ(B)SMT (−k; −B) = M(k;B)χ(B)S (2.64)

where S = diag (η1, η2, . . . ) is the matrix of the time-reversal eigenvalues and
the susceptibilities obey

Sχ(B)S = χT (−B) (2.65)
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where T stands for transpose matrix.
One could also apply the same procedure to other discrete symmetries,

such as parity, however in these other cases the procedure is not as useful,
since it is usually enough to keep track of the parity breaking parameters
of the theory [179]. This is related to the fact that only time-reversal is
associated with an anti-unitary operator.

2.2.4 Thermoelectric transport

In this thesis we are often interested in finding the thermoelectric transport
coefficients in a linear-response-theory framework. Usually the charge and
heat currents couple respectively with the electric field and a temperature
gradient, but there are also thermoelectric effects where the sources create
mixed responses described by the full thermoelectric matrix. In linear
response we can define [169](

δJi

δQi

)
=
(
σij αij

T ᾱij κ̄ij

)(
δEj

−∂jδT

)
(2.66)

where σ is the electrical conductivity tensor, κ̄ is the thermal conductivity
tensor, α and ᾱ are the thermoelectric tensors.

The σ that appears in the constitutive relations is not to be confused with
σij : σ is a transport coefficient, cannot be determined by hydrodynamics,
and depends on the microscopic theory, on the other hand σij describes the
macroscopic response of the current with respect to an external electric field
and will contain a contribution due to σ.

It should be noted that κ̄ is not the usual thermal conductivity measured
in experiments: in the laboratory measurements of the thermal conductivity
are usually performed with the boundary condition J = 0, while in the above
definition the boundary condition is E = 0. The relation between κij and
κ̄ij is

κij = κ̄ij − T ᾱikσ
−1
kl αlj (2.67)

Transport coefficients have to obey Onsager relations, this implies that the
matrices αij and ᾱij are related by αij(B) = ᾱij(B), with B an external
magnetic field that breaks time-reversal invariance [14, 169].

In linear response theory we would like to perturb the system with a
small electric field and temperature gradient, from there, find how the electric
and heat currents react upon these perturbations. To do so, we have to
first figure out the correct sources: for example the electric current does not
couple to the electric field in the Hamiltonian, but instead it couples to the
four-potential Aµ.

A disturbance in temperature couples to the Hamiltonian, and since we
are working in the grand canonical ensemble we find

δH = −
�

ddx

(
δT (t,x)

T
(ε(t,x) − µn(t,x)) + δAµ(t,x)Jµ(t,x)

)
(2.68)
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We can fix the gauge by choosing the electric field to be minus the gradient
of A0, Ei = −∂iA

0, so we can ignore the δAiJi terms and focus on δA0n

δH = −
�

ddx

(
δT (t,x)

T
(ε(t,x) − µn(t,x)) + δA0(t,x)n(t,x)

)
(2.69)

In classic thermodynamics the heat current is defined as [169] JQ =
TJS = JU − µJN where JS is the entropy current while JU and JN are
respectively the energy and charge current. In the relativistic case ε− µn is
the time component of the heat current four-vector. Hence, the relativistic
generalization to the heat current, in linear response theory, is simply

δQi = δT 0i − µδJ i (2.70)

It is also possible to arrive at the same result from a variational approach
perspective, by studying temperature fluctuations as changes in the Euclidean
time component of the metric. This is the method followed in [176, 180]
to arrive at the form of the canonical heat current, without resorting to
thermodynamics.

The Kubo formulae for the conductivities in terms of the retarded Green
functions are

σij(ω) = −
GR

JiJj
(ω) −GR

JiJj
(0)

iω
(2.71a)

αij(ω) = −
GR

JiQj
(ω) −GR

JiQj
(0)

iωT
(2.71b)

ᾱij(ω) = −
GR

QiJj
(ω) −GR

QiJj
(0)

iωT
(2.71c)

κ̄ij(ω) = −
GR

QiQj
(ω) −GR

QiQj
(0)

iωT
(2.71d)

Then, from a practical perspective, if we are interested in the conductivities
we can simply perturb the system with linear sources

T → T + δT − Txiδζi F 0i → δEi (2.72)

where ζi = ∂iT/T is the heat source, and solve the equations of hydrody-
namics in Laplace-Fourier space at k = 0 to arrive at (2.52), from which we
can read off the conductivities (2.71).

For future reference, we report here the optical conductivities in order-one
hydrodynamics without background magnetic field. These are

σ(ω) = σ + in2

ω(ε+ P ) (2.73a)

α(ω) = −µ

T
σ + ins

ω(ε+ P ) (2.73b)

κ̄(ω) = µ2

T
σ + is2T

ω(ε+ P ) (2.73c)
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and Onsager relations constraint ᾱ = α. We notice that the conductivities
diverge as ω goes to zero, in particular the imaginary part has a pole, hence
Kramers–Kronig relations imply that the real part has a delta function at
ω = 0 [24]. This is because momentum is a conserved operator, which
means that in the presence of a background constant electric field a charged
fluid accelerates without bound. Finally, the Green functions of conserved
quantities obey certain Ward identities [74, 176, 181] that are reflected in
relations between the conductivities. In this case it is easy to check that

α(ω) = −µ

T
σ(ω) + in

Tω
(2.74a)

κ̄(ω) = µ2

T
σ(ω) + i (ε+ P − 2µn)

Tω
(2.74b)

2.2.5 Modes and linear stability

The first and easiest thing one can wish to compute when he is handed a
theory of hydrodynamics are the modes. These give information about how
small collective fluctuations near thermal equilibrium propagate inside the
fluid, and furthermore it gives important clues about the stability of the
theory.

From a formal perspective, the modes ω(k) are eigenfrequencies of the
linearized equations of motion. Starting from the conservation laws and the
constitutive relations, we can consider fluctuations on a global thermodynamic
equilibrium state of the form

ϕa(t,x) = eiωt−ik·xϕa (2.75)

The equations of hydrodynamics can be rewritten in Fourier space as

Mab(k)ϕb = ωϕa (2.76)

and host non-trivial solutions only if det(M −1ω) = 0, from which we obtain
the modes of the system.

The requirement of causality, when applied to the analytic structure
of the modes for complex frequency ω, tells us that the imaginary part
of the modes must be non-positive. This is related to the discussion on
the analyticity of the retarded correlators GR discussed in Section 2.2.1,
because the poles of the Green functions are the modes themselves (this can
be seen by the fact that to obtain the Green functions we need to invert
the hydrodynamic matrix, which in turn leaves us with the determinant of
M − 1ω in the denominator), and the poles must lay in the lower-half of the
complex ω plane.

One final comment on the terminology: by definitions the hydrodynamic
modes should be such that ω(k = 0) = 0, however when there are impurities,
magnetic fields or other slow variables that enter the hydrodynamic regime
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this might not be true [50]. It is thus common to call a mode hydrodynamic
if it is the lowest lying mode (the closest one to the real axis at k = 0),
irrespective of its actual value, and provided that the non-hydrodynamic
modes are deep enough in the bottom-half of the complex plane.
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Chapter 3
Hydrodynamic and holographic
Charge Density Waves

“Reality exists in the human mind, and nowhere else.”

George Orwell, 1984

3.1 Introduction

As we have already discussed in the introduction, High-Temperature super-
conductors, of which cuprates are typical examples, are believed to host
strongly coupled phases of matter that do not allow a microscopic description
in terms of quasiparticles, see [182, 183] for some reviews. This is usually
argued based on the peculiar features of the cuprates, such as the electric
resistivity that scales linear in T on a very broad range of temperature (from
as low as 10 K, up to 300 K), implying that the standard description in terms
of phonons and Fermi-liquid cannot be accurate [14, 147, 184–186]. On
the other hand holography, which is not based on a description in terms of
quasiparticles, together with the existence of a quantum critical point, might
be able to capture the Planckian transport many-body dynamics of these
strongly coupled systems [146, 180, 187, 188].

One common feature of cuprates is the presence of Charge Density Wave
order in the phase diagram for certain values of the parameters. Charge
Density Waves are the collective behaviour of charges that can sometimes
arise in the presence of an ionic lattice [190]. In metals usually the charge
density is uniform throughout the system, however in the presence of electron-
phonon interactions the lattice is distorted to a new periodicity λc, and a gap
opens up that leads to Charge Density Wave modulation of the electron fluid,
see Figure 3.2. The long-lived CDW collective modes due to the spontaneous
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Figure 3.1: Typical phase diagram of cuprates, taken from [189]. The strange metal
phase above the superconducting dome is non-Fermi liquid and presents the typical
linear-in-T resistivity. Close to optimal doping there is often a coexistence of charge
density wave and superconducting phase.

breaking of translations in the electron fluids, because they are (almost)
gapless, can be important for the low-energy dynamics in the hydrodynamic
regime, on par with other conserved quantities [116]. Wigner crystals have a
different physical origin, but nonetheless they can give rise to a low-energy
dynamics which is very similar. The main difference is that Wigner crystals
always break translations in all spatial directions, while CDW can break
the symmetry only in certain directions, producing smectic phases. In this
chapter, however, we will only focus on the case in which translations are
broken in all directions.

Finally, one last ingredient we need to consider is that condensed matter
experiments are usually performed in the presence of an external magnetic
field. This is both to suppress superconductivity and enhance the strongly-
coupled strange metal regimes, but also to study other transport coefficients
such as the Hall conductivities.

For these reasons, many holographic models in which translation sym-
metry is broken either spontaneously or pseudo-spontaneously have been
intensively studied to better understand the low energy physics of these
systems and, at the same time, holography itself. This has led to many
different approaches to translations breaking, from massive gravity [161, 162,
192–198], to spatially modulated charge density [199–201] and Q-lattices
[202–211].

At the same time, holography sparkled a new interest in the low energy
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Figure 3.2: Figure taken from [191]. Without interactions the charge density is
uniform in equilibrium. The presence of electron-phonon interactions induces a
charge modulation order, while thermal fluctuations work to destroy this effect.

EFT and hydrodynamic description of these phases of matter [39–41, 184,
212–214]. However, it is now known that in the context of broken-translation
symmetry, holography and hydrodynamics do not naively match. This is
because the holographic Q-lattice description is metastable, namely the
vacuum does not minimize the free energy, and thus the hydrodynamic
description has to be modified to include the effect of the so-called lattice
pressure Pl [41, 214–216]. In stable systems the lattice pressure vanishes
and its thermodynamic derivatives ∂TPl, ∂µPl can be absorbed by redefining
certain transport coefficients.

In this chapter we will consider a model of CDW, both from a hydrody-
namic and holographic perspective, in the presence of a strong magnetic field
which is order zero in derivatives B ∼ O(1). To match the two approaches, we
need to also include the lattice pressure in the thermodynamic of our hydro-
dynamic model. We consider both the case in which translation symmetry is
broken spontaneously, thus leading to a gapless Goldstone mode, and pseudo-
spontaneously, i.e. in which the Goldstone acquires a parametrically-small
mass. We compute the AC conductivities analytically from hydrodynamics
and numerically from holography; subsequently, using a method developed
in [217] based on Ward identities, we express the AC results in terms of the
DC values of the conductivities, which can be computed analytically from
holography in terms of horizon data. This allows us to match the correlators
obtained from the two approaches to high precision, and we observe a very
good agreement between the two descriptions.

In Section 3.2 we discuss general properties of systems in which transla-
tions are broken by a scalar field. Then, in Section 3.3 and 3.4, we develop the
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hydrodynamic theory for the cases of spontaneous and pseudo-spontaneous
breaking of translations respectively. Finally, in Section 3.5 we briefly review
our holographic model and match the conductivities obtained from numerics
to the analytic hydrodynamic ones.

3.2 Breaking the translation symmetry and Ward
identities

The equations of motion for the hydrodynamic model are still the conservation
equations for the stress-energy tensor and a U(1) current, however this time
we must also include the presence of an extra scalar due to the symmetry
breaking

∂µ⟨Tµν⟩ = F νλ⟨Jλ⟩ − ∂νΦI⟨OI⟩ (3.1a)
∂µ⟨Jµ⟩ = 0 (3.1b)

where OI , with I = 1, . . . , d, is a set of scalar operators that break spatial
translations and can be identified with the Goldstone modes for the broken
symmetry [214], while ΦI are their conjugate sources. The scalars OI are
dynamical, which means that we need other equations of motion that will take
the form of Josephson-like relations. However, because these equations are
not constrained by symmetries and are obtained order by order in derivative
expansion, they do not lead to Ward identities.

To achieve the spontaneous breaking of translations we consider scalars
operators that take a non-zero vev proportional to the spatial coordinates in
the background ⟨OI⟩ ∝ xiδiI , while for the explicit and pseudo-spontaneous
case instead we take the source fields to be proportional to the spatial
coordinates ΦI = φxiδiI where φ is some parameter, such that the spacetime
derivatives of ΦI are constants.

Tuning the value of φ allows us to better identify two different regimes:
the pseudo-spontaneous case, which is of interest for this chapter, is when
φ ≪ |∂i⟨OI⟩|. Then the Goldstone acquires a small mass, denoted by ω2

0
and called pinning frequency, and still behaves like a pseudo-Goldstone
boson, much like the pions in QCD. The second scenario is the explicit case
φ ≥ |∂iOI | which leads to non-Goldstone dynamics [164].

This specific construction of translation breaking can be realized in
systems that have spatial translation invariance, and in which the scalar
operators have a constant internal shift symmetry OI → OI + cI . Then,
breaking the translation symmetries leads to a diagonal subgroup of the two
symmetries that remains unbroken, which in turns ensures that the equations
of motion remain homogeneous. This is indeed the minimal scenario that
allows for such symmetry breaking, according to the classification of phases
of matter in [218]. The same setup has indeed been used for many different
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Figure 3.3: Figure taken from [221]. The presence of a string in the ground state
breaks the 3-dimensional Poincaré group to the 2-dimensional one. Left: Clearly,
global rotations and global translations are different operation that change the
vacuum state. Right: Nonetheless, local translations can be undone with local
rotations, and vice versa.

purposes, such as studying lattice phonons [219], hydrodynamics [184, 220]
and holographic [193, 195, 197, 198, 200, 201, 203–205, 216] effective field
theory descriptions of charge density waves states.

Following [218] we can understand this construction from an EFT point
of view. Consider a microscopic theory that is symmetric under the full
Poincaré group, where P0, Pi, Ji and Ki are respectively the generators for
time and spatial translations, rotations and boosts, plus eventually other
internal symmetries Q. Now, we assume that there is a set of generators P̄0,
P̄i and J̄i that leave the ground state of the low-energy EFT invariant, and
that are unbroken, so that the system looks homogenous. These generators
are not necessarily the same of the microscopic theory, but they clearly obey
the same algebra, and in general will be a combination of microscopic and
internal symmetry generators. In the case of interest, for example, we can
take P̄0 = P0, P̄i = Pi + Qi and J̄i = Ji + Q̃i and by the requirement that
Qi and Q̃i commute with Poincaré we find that[

Q̃i, Q̃j

]
= iϵijkQ̃k [Qi,Qj ] = 0

[
Q̃i,Qj

]
= iϵijkQk (3.2)

This is the algebra of three-dimensional Euclidean group ISO(3), i.e. the
Q̃i generate an internal SO(3) rotation symmetry, while the Qi are the
generators of internal translations.

This setup has nine broken generators (the Qi, Q̃i and the boosts), but
hosts only three Goldstone modes. This happens because in the presence
of spacetime symmetries the counting of Goldstone bosons can be subtle,
compared to the case with spontaneously broken internal symmetries [221–
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224], see Figure 3.3 and the reviews [225, 226]. In particular the Goldstone
fields can acquire a gap [227–230], so they are irrelevant for the low-energy
physics, or can be removed from the spectrum using the inverse-Higgs
constraint [231–233]. This happens whenever the commutator between the
generators of the unbroken translation of the effective theory P̄ and the
broken generators Q contains another multiplet of broken generators Q′,
namely [

P̄ ,Q
]

⊃ Q′ (3.3)

When this condition is satisfied, we can then express the Goldstone modes
that arise from the breaking of Q in terms of derivatives of those arising from
the breaking of Q′, thus reducing the total number of independent Goldstone
fields. In our specific example, we have that[

P̄0,Ki

]
= −i

(
P̄i − Qi

)
and

[
P̄i, Q̃j

]
= iϵijkQk (3.4)

which gives six inverse-Higgs constraints and reduces the number of Goldstone
bosons from nine to three. The minimal implementation of this symmetry
breaking pattern describes ordinary solids, and amounts to having a triplet
of scalar fields OI that transforms under the internal SO(3) and shifts under
the internal symmetry Q as OI → OI + cI , which can be interpreted as solid
volume elements [234–236]. Then, taking the expectation values ⟨OI(x)⟩ = xI ,
realizes the desired symmetry breaking scenario and the fluctuating fields
δOI = OI − xI describe the Goldstone bosons.

We now set d = 2 and compute the Ward identities for the two-point
functions of this system. We take the spatial derivatives of the scalar sources
to be constants ∂iΦI = φδI

i and expand the various quantities in Fourier
modes. Then, at zero wavevector k = 0, we find

iω⟨QiQj⟩ = −
(
iωµδi

k − F i
k

)
⟨QkJ j⟩ + φ⟨QiOJ⟩δj

J − iω (χππ − µn) δij

(3.5a)

iω⟨QiJ j⟩ = −
(
iωµδi

k − F i
k

)
⟨JkJ j⟩ + φ⟨J iOJ⟩δj

J − iωnδij (3.5b)

iω⟨QiOJ⟩ = −
(
iωµδi

k − F i
k

)
⟨JkOJ⟩ − φ⟨OIOJ⟩δi

I + δiJ (3.5c)

where Qi = T i0 −µJ i is the canonical heat current and χππ is the momentum
susceptibility.

There is a remarkable ladder structure in these Ward identities, in
particular we can write the heat current correlators in terms of the scalars
and U(1) current correlators. This means that our system has actually only
3 independent Green functions, which we take to be ⟨OIOJ⟩, ⟨J iOJ⟩ and
⟨J iJ j⟩, and the other ones can be obtained from these using the above
Ward identities. These expressions, following [217], will allow us to fix
the hydrodynamic transport coefficients in terms of the DC values of the
conductivities, which are related to the Green functions via (2.71).
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3.3 Spontaneous case
Here, we will focus on the simpler case of the spontaneous breaking of
translation symmetry, therefore we set φ = 0, and we take the fluctuations
of the scalar fields OI to be the Goldstone modes associated to the breaking
of spacetime translations.

3.3.1 Constitutive relations

Our construction is based on the geometric formalism developed in [41,
214]. The idea is to consider OI to be crystal fields, namely they represent
coordinates of the unbroken ISO(2) crystal manifold1, such that we have
both spacetime coordinates xµ and crystal coordinates OI . In this work we
take I = 1, . . . , d with d = 2, so that translations are broken in all directions,
while systems with I = 1, . . . ,m with m < d describe smectic phases. In the
context of CDW and quasicrystals, the OI field (or, better, its fluctuation),
is called phason [237].

We define the pullback from the (2 + 1)-dimensional spacetime to the
2-dimensional crystal manifold eI

µ = ∂µO
I . Subsequently, we pullback the

inverse spacetime metric on the manifold by defining hIJ = gµνeI
µe

J
ν , which

acts as an inverse metric on the crystal manifold, allowing us to raise crystal
indices. Similarly, we can also define the inverse matrix hIJ = (hIJ)−1 that
can be used to lower the crystal indices. We take the vielbeins to be order-
zero quantities in the derivative counting of our hydrodynamic formulation
eI

µ ∼ O(1).
We further define the non-linear strain tensor uIJ = (hIJ − hIJ)/2 that

parametrizes the distortion of crystal manifold with respect to some reference
rest configuration that we denote by hIJ . We assume that the reference
metric hIJ is fixed and time-independent, thus that we are describing elastic
systems [41, 214], while relaxing this assumption leads to the more general
class of plastic materials which can be permanently deformed [40]. The
standard choice here is to consider a flat crystal metric, hence we choose the
reference configuration hIJ = δIJ/α

2 which is isotropic and homogeneous.
Here α represents the inverse crystal lattice spacing, however by redefining
OI → αOI we can always set α = 1 without loss of generality.

Until now the construction is completely arbitrary and valid for generic
crystal metric. From this point, we specialize to the hydrodynamic regime, in
which we require that the strain is small so that we can define an expansion
in power of the strain tensor. Then the free energy F , that describes the
equilibrium (ideal fluid) part of the system, is given by the integral of the
total pressure P = P (T, µ,B, hIJ), which is itself the sum of the contribution
of the fluid pressure Pf and the crystal. Namely, we have F =

�
d2√

−gP
1In the context of CDW and Wigner crystal, the crystal is not the standard condensed

matter lattice made of positive ions, but an electronic crystal.
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where we expand the pressure up to quadratic terms in strain

P = Pf −mB+Pl

(
uI

I + uIJuIJ

)
−K

2
(
uI

I

)2
−G

(
uIJuIJ − 1

2
(
uI

I

)2
)

+O(u3)
(3.6)

Here m = ∂P/∂B is the magnetization density conjugate to the order-zero
magnetic field B ∼ O(1), Pl is the lattice pressure, while K and G are
respectively the bulk and shear modulus of the crystal [214]. The presence of
the lattice pressure, in particular, is what makes this expression different from
older results, and signals that the system is in a metastable state. Indeed, in
classical elasticity theory the free energy is minimized with respect to the
strain, which requires setting the linear term Pl = 0 in equilibrium [238].

Given the above thermodynamic free energy, we can define the total
energy, charge and entropy densities from the pressure P in the usual way,
according to the thermodynamic relations

dP = s dT + n dµ+mdB + 1
2rIJ dhIJ ε+ P = sT + µn (3.7)

We also defined the elastic stress tensor rIJ as a thermodynamic derivative
of P . Subsequently, we can further separate this in the contributions from
the fluid, indicated by the subscript f , and from the lattice, identified with
l. In particular, we assume that the fluid and lattice have a well-defined
thermodynamics by themselves, and thus we can write dPf = sf dT +nf dµ+
m dB and equivalently dPl = sf dT +nf dµ, which also lead to the integrated
forms εf + Pf = sfT + nfµ and εl + Pl = slT + nlµ.

With the free energy (3.6) we can finally express the constitutive relations
for the stress energy tensor and the U(1) current order-by-order in derivatives.
To do this we define the projector orthogonal to the fluid velocity ∆µν =
gµν +uµuν , its pulled-back form ∆Iµ = ∆µνeI

ν and, as usual, the electric field
as Eµ = Fµνu

ν . The constitutive relations, up to order one in derivatives for
an isotropic fluid in the Landau frame, take the form [41]

Tµν = εuµuν + P∆µν − rIJe
IµeJν − ∆I(µ∆Jν)ηIJKL∆K(ρ∆Lσ)∇ρuσ

(3.8a)

Jµ = nuµ − ∆IµσIJ∆Jν
(
T∂ν

µ

T
− Eν

)
− ∆IµγIJu

νeJ
ν (3.8b)

The first three terms in Tµν are the ideal fluid contribution, with an extra
piece compared to the standard result due to the presence of the crystal
fields OI , while ηIJKL, σIJ and γIJ are transport coefficients.

As we mentioned earlier, we must also provide the equations of motion
for the Goldstone fields, the Josephson-like relations. These equations are
not constrained by conservation laws, hence they must be obtained order
by order in derivative expansion exactly like the constitutive relations. At
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lowest order in the hydrodynamic expansion they constrain the scalar fields
to be constant along the fluid flow, while at order one they take the form

σϕ
IJu

µeI
µ + γ′

JK∆Kµ
(
T∂µ

µ

T
− Eµ

)
+ ∇µ

(
rJKe

Kµ
)

= Kext
J (3.9)

where σϕ
IJ and γ′

IJ are two further dissipative transport coefficient matrices,
while Kext

J is an external background source that couples to the scalar fields
OI . It can be understood as a different parametrization with respect to ΦI

used in Section 3.2, and it enters the stress-energy tensor equations of motion
as

∇µT
µν = F νλJλ −Kext

I eIν (3.10)
This difference can be understood from the fact that in Section 3.2 we
took OI to be the fundamental field and ΦI its non-linear source, meaning
that we used ΦI to formally compute n-point functions from a generator
W = W [g,A,Φ]. Here, following [214], we are considering a functional
generator W = W [g,A,O] which is related to the previous one via Lagrange
transform, where Kext

I is the external field coupled to OI . The former is
better suited to compute the Ward identity, while the latter gives a more
direct access to interesting thermodynamic quantities.

These constitutive relations are already the most general expressions
compatible with the positivity of entropy production up to order one in
derivatives, however, as we discussed in Chapter 2, we will also require
time-reversal invariance of the microscopic theory. In this case the Onsager
relation ⟨OIJ j⟩ = −⟨J iOJ⟩ require us to identify γ′

IJ = −γIJ .
These expressions are valid for strain tensors uIJ arbitrary large, however

in practice we often want to focus on the small strain fluctuations about
some global thermodynamic equilibrium, thus we linearize in small amplitude
O(u2). In this regime, the first-order transport coefficients are independent
of the strain (they can still depend on T and µ). However, because of the
background constant magnetic field B, we allow for the presence of Hall
transport coefficients in the constitutive relations [217]. Then we can further
decompose transport coefficients as(

γ, σ, σϕ
)

IJ
=
(
γ, σ, σϕ

)
(L)

δIJ +
(
γ, σ, σϕ

)
(H)

FIJ (3.11)

where FIJ = Fµνe
µ
I e

ν
J is the pullback of the electromagnetic field strength.

Above, we denoted with (L) the longitudinal transport coefficients, while (H)
stands for the Hall transverse transport coefficients, induced by the presence
of the magnetic field. σIJ is the charge conductivity, σϕ

IJ the so-called crystal
diffusivity and γIJ is a mixed scalar-charge conductivity. Finally, ηIJKL

contains information about the shear and bulk viscosities, and we could
in principle also decompose it in SO(2) terms with δIJ and FIJ , however
because we are interested in the diffusive sector, i.e. the thermoelectric
transport at zero wavevector, the contribution of viscosities is not relevant.
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With these definitions at hand, the constitutive relations up to order one
in derivative and up to linear order in strain u are

Tµν =
(
εf + εlu

λ
λ

)
uµuν +

(
Pf + Plu

λ
λ −mB

)
∆µν + Plh

µν − 2Guµν

− (K −G)uλ
λh

µν + O(u2, ∂2) (3.12a)

Jµ =
(
nf + nlu

λ
λ

)
uµ − σIJ∆Iµ∆Jν

(
T∂ν

µ

T
− Eν

)
− γIJ∆IµeJ

νu
ν + O(u2, ∂2) (3.12b)

where hµν = hIJe
I
µe

J
ν and uµν = uIJe

I
µe

J
ν , and we did not include the

viscosities in the stress-energy tensor, since they are not relevant for the
optical thermoelectric conductivities. The Goldstone equation in this regime
is

σϕ
IJu

µeJ
µ − hIJ∇µ

(
Ple

µJ − (K −G)uλ
λe

µJ − 2GuµνeJ
ν

)
− γIJ∆Jµ

(
T∂µ

µ

T
− Eµ

)
= Kext

I (3.13)

3.3.2 AC conductivities

With the constitutive relations and the equations of motion at hand, we can
finally compute the AC conductivities analytically using the tools reviewed in
Section 2.2. We consider a background with flat spacetime metric gµν = ηµν

and constant magnetic field F 12 = B, with vanishing electric field, Goldstone
source Eµ = Kext

J = 0 and vanishing spatial velocity uµ = (1,0). The global
thermodynamic equilibrium has constant temperature, chemical potential
and uniform scalar fields OI = xI .

To proceed, we linearize the equations of motion around this background
equilibrium solution by introducing fluctuations of the hydrodynamic fields

T → T + δT µ → µ+ δµ (3.14a)
uµ → (1, vi) OI → xI − δOI (3.14b)

and of their sources δEi = δF 0i and δKext
I . We can then Fourier transform

all the linear fluctuations by assuming plane wave dependence exp(−iωt+
ik · x) and solve the algebraic equations of hydrodynamics to express the
hydrodynamic fields in terms of the linear sources. Plugging back in the
results into the constitutive relations at k = 0 allows us to read off the two-
point functions for the independent correlators ⟨J iJ j⟩, ⟨J iOJ⟩ and ⟨OIOJ⟩.

We can subsequently use the Ward identities in their ladder form (3.5)
to obtain the missing correlators involving the canonical heat current. One
comment here is important: in the present context the thermodynamic heat
current, that couples to the source −T∂iδ

1
T = δζi (see (2.66)) is not the

canonical heat current. This can be verified by also turning on a temperature
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gradient T → T + δT − xiδζi and checking that the correlators obtained
in this way do not obey Onsager relations or the Ward identities. Then, if
one wishes to obtain the canonical heat current correlators without using
the Ward identities, a metric fluctuation δg0i must be turned on. Spacetime
fluctuations couple to the stress energy tensor and allows one reconstructing
the heat current correlators in terms of the stress-energy tensor and current
Green functions as e.g. ⟨QiJ j⟩ = ⟨T 0iJ j⟩ − µ⟨J iJ j⟩.

In this chapter we decided to work with the canonical heat current, since
it is the quantity that naturally appears in the Ward identities, and to
connect with previous works [41, 196, 203, 204, 214], however it would have
been possible to do the same computation using the thermodynamic heat
current without major differences, see [207, 211].

We define the Kubo formulae for the AC conductivities in terms of the
correlators (2.71)(

σij , αij , γiJ
)

(ω) =
(

⟨J iJ j⟩
iω

,
⟨QiJ j⟩
iω

, ⟨J iOJ⟩
)

(3.15a)

(
κij , XIJ , θiJ

)
(ω) =

(
⟨QiQj⟩
iω

, iω⟨OIOJ⟩, ⟨QiOJ⟩
)

(3.15b)

As we will see, the DC values of the conductivities in the first line is completely
fixed by symmetries, i.e. the Ward identities. The conductivities in the
second line, instead, have a DC value that depends on the microscopic details
of the system and is a priori unconstrained.

Using the ladder structure of the Ward identities (3.5), the conductivities
α(ω), κ(ω) and θ(ω) can always be derived from σ(ω) and γ(ω). Furthermore,
in the spontaneous case φ = 0, X(ω) decouples in the Ward identities and
cannot be obtained from other correlators. Thus, it is enough to provide the
expressions for σ(ω), γ(ω) and X(ω) to give all the information needed to
describe the thermoelectric transport.

The expressions for the Green functions computed from linearized hydro-
dynamics are very large, even at zero wavevector, for this reason we use a
matrix notation to express the results. First we define the matrices of the
hydrodynamic transport coefficients and AC conductivities (always identified
with an explicit ω dependence) by decomposing with respect to SO(2)

(σ̂, σ̂ϕ, γ̂) = (σ, σϕ, γ)(L)12 − (σ, σϕ, γ)(H)F (3.16a)
(σ̂, α̂, κ̂, γ̂, X̂, θ̂)(ω) = (σ, α, κ, γ,X, θ)(L)(ω)12 − (σ, α, κ, γ,X, θ)(H)(ω)F−1

(3.16b)

where F = FIJ is the antisymmetric matrix proportional to the magnetic
field. We further define the following matrix structures that appear frequently
in the expressions

σ̂′ = γ̂2 + σ̂ · σ̂ϕ ρ̂ = 2γ̂ + F · σ̂ − nf12 (3.17)
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Finally, the full analytic expressions for the three independent conductivities
are

σ̂(ω) = Λ̂−1 ·
[
ωPl(inf ρ̂− ωwf σ̂) + n2

f σ̂ϕ − (nfF + iωχππ12)σ̂′
]

(3.18a)

γ̂(ω) = Λ̂−1 (iωwf γ̂ − nf σ̂ϕ + F · σ̂′) (3.18b)
X̂(ω) = Λ̂−1 · (F · ρ̂+ iωwf12 − σ̂ϕ) (3.18c)

Λ̂ = ωPl (iF · ρ̂− ωwf12) + σ̂ϕ(Fnf − iωχππ12) − F 2 · σ̂′ (3.18d)

with wf = εf + Pf the enthalpy density.
The above conductivities, derived from hydrodynamics, are written in

terms of the undetermined transport coefficients matrices σ̂, σ̂ϕ and γ̂. We
can however use the Ward identities, by expanding at leading order in ω,
to express these transport coefficients in terms of the DC values of the
conductivities [217]. Assuming that they are finite as ω → 0, we find

σ(L)(ω) = − i

B2

(
µnf − α(H)(0)

)
ω +

κ(L)(0)
B2 ω2 + O(ω3) (3.19a)

σ(H)(ω) = σ(H)(0) +
κ(H) − µ (2χππ − µnf )

B2 ω2 + O(ω3) (3.19b)

γ(L)(ω) =
i
(
µ+ θ(H)(0)

)
B2 ω + O(ω2) (3.19c)

γ(H)(ω) = γ(H)(0) − iθ(L)(0)ω + O(ω2) (3.19d)

where the DC values of σ, α and γ are fixed by symmetries to

σ(L)(0) = α(L)(0) = γ(L)(0) = 0 σ(H)(0) = −nf (3.20a)
α(H)(0) = µnf − χππ γ(H)(0) = −1 (3.20b)

However, the remaining conductivities are undetermined in DC and can be
put in one-to-one correspondence with the transport coefficients [212]. Doing
so we find

σ̂ = Φ̂−1 ·
(
κ̂(0) + 2χππ θ̂(0) − χ2

ππX̂(0) − µ2nfF
−1
)

+ nfF
−1 (3.21a)

σ̂ϕ = Φ̂−1 ·
[
F · (P 2

l X̂(0) − κ̂(0) − 2Plθ̂(0)) + µ(µnf − 2wf )12
]

· F (3.21b)

γ̂ = Φ̂−1 ·
[
F ·

(
PlχππX̂(0) + (wf − 2χππ)θ̂(0) − κ̂(0)

)
+ µ(µnf − wf )12

]
(3.21c)

Φ̂ =
(
µ12 − F · θ̂(0)

)2
+ (F · κ̂(0) − µ(µnf − 2χππ)12) · F · X̂(0) (3.21d)

This identification is particularly useful both for experiments and holography,
since it allows us to fix the values of the hydrodynamic transport coefficients
not via Kubo formulae or by matching the pole structure, but simply by the
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values of the DC conductivities. In particular in holography the DC transport
can be computed analytically in terms of horizon data, therefore this approach
allows us to write the analytic AC conductivities from hydrodynamics in
terms of horizon quantities alone (DC conductivities and thermodynamics).

Both the AC conductivities and the transport coefficients in terms of
DC data agree, at zero lattice pressure Pl = 0, with [212], and at zero
magnetic field B = 0 with [41], upon appropriate redefinitions of the transport
coefficients to match the notations.

3.4 Pseudo-spontaneous case
We now focus on the case of pseudo-spontaneous or explicit breaking of
translation symmetry, where the difference between the two scenarios only
stems from the magnitude of the source that breaks the symmetry. If
φ ≪ |∂i⟨OI⟩| we call it pseudo-spontaneous, otherwise if the source is
large, it is an explicit breaking. Physically, pinned charge densities arise
whenever there are defects or impurities in the crystal which select a preferred
configuration for the ground state.

3.4.1 Constitutive relations

If the breaking of translation is small, we can take the constitutive relations
to be exactly the same as in the spontaneous case (3.8), however we must
modify the conservation equations to also include the presence of a small
parameter that explicitly breaks translations. In particular, because of the
presence of a non-zero background mass term for the scalar fields, we modify
the momentum conservation equation to include the effect of this coupling

∂tP
i + ∂jT

ij = F iµJµ −Kext
I eIi + ω2

0χππO
Iδi

I (3.22)

in which ω2
0 is called the pinning frequency. This expression comes directly

from the one-point Ward identity in (3.1) by considering an homogeneous
source ΦI = φxI with φ = ω2

0χππ.
The Josephson equations for the scalars OI also receive corrections due

to the mass term. In particular, we are now allowed to add an extra term
on the RHS that accounts for the possibility of the Goldstone field to relax
in spacetime [156]. Thus, we modify the equation to introduce a phase
relaxation term ΩIJOJ , namely

σϕ
IJu

µeI
µ +γJK∆Kµ

(
T∂µ

µ

T
− Eµ

)
+ ∇µ

(
rJKe

Kµ
)

= ΩIJO
I +Kext

J (3.23)

While the presence of pinning ω0 in (3.22) is due to defects in the crystals,
phase relaxation can be understood due to the motion of topological defects,
specifically dislocations, see Appendix B of [220]. We can decompose the
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phase relaxation tensor, as we did for the other transport coefficients in
(3.11), with respect to SO(2) rotation invariance and microscopic parity
invariance, hence we define

ΩIJ = Ω(L)δ
IJ + Ω(H)F

IJ (3.24)

Although the phase relaxation tensor is in principle an independent
transport coefficients, from the point of view of continuous symmetries,
Onsager relations happen to constraint it. In particular, it can be shown that
the phase relaxation is diagonal and proportional to the pinning frequency

ΩIJ = ω2
0χππδ

IJ + . . . (3.25)

hence Ω(H) = 0. This result seems in contrast with previous studies that
found a non-zero Hall term for the phase relaxation tensor [212], however
the difference in the two formalisms comes from the fact that here we
are normalizing the Josephson equations with an extra factor of σϕ. We
can normalize the kinetic term in (3.23) to the identity, multiplying the
equation with (σϕ

IJ )−1, so that the above Onsager constraint becomes ΩIJ =
ω2

0χππ(σϕ)−1, in agreement with previous works. In the above formula the
dots express the fact that the relation holds only up to the lowest order in
ω2

0, and higher-order O(ω4
0) corrections in general will enter the expression

[156].
This relation between pinning frequency and the Goldstone phase re-

laxation was first obtained from holography in [205] and holds generally
even for other broken symmetries [239]. Here, we obtained (3.25) imposing
microscopic time-reversal symmetry, however subsequent papers managed to
find other proofs of this result based on various different approaches, such
as: locality [156], positivity of entropy production [39], and EFT arguments
[240], suggesting even more convincingly the universality of this relation.

Finally, we remark that if the Goldstone becomes very massive, its low-
energy dynamics freezes, and it can be integrated out [212]. In this case the
Goldstone takes the equilibrium value ⟨OI⟩ = xI and from (3.23) we arrive
at ΩIJO

J ≈ σϕ
IJu

J . Plugging this expression for OI into (3.22) we find

∂tP
i + ∂jT

ij = F iµJµ + ΓI
Jχππu

Jδi
I (3.26)

where ΓI
J ≈ ω2

0

(
ΩIK

)−1
σϕ

KJ acts as an effective relaxation term for the
physical momentum.

3.4.2 AC conductivities

The computation of the optical conductivities goes through exactly as in the
spontaneous case, without any change.
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To express the results we introduce some new definitions for the con-
ductivities, which are more appropriate for the pseudo-spontaneous case.
Specifically we define

(ϖiJ , ζIJ)(ω) = 1
iω

(
⟨J iOJ⟩, ⟨OIOJ⟩ − δIJ

φ

)
(3.27)

in place of the two spontaneous conductivities γiJ(ω) and XIJ(ω). These
conductivities have different powers of ω with respect to their spontaneous ver-
sion, to reflect the fact that the two cases, spontaneous or pseudo-spontaneous,
have a different low frequency expansion, as observed from the two-point
functions Ward identities (3.5). Furthermore, we decompose the AC conduc-
tivities with respect to SO(2) differently, by keeping an extra factor of B2

with respect of the spontaneous case

(σ̂, α̂, κ̂, ϖ̂, ζ̂, θ̂)(ω) = (σ, α, κ,ϖ, ζ, θ)(L)(ω)12 +(σ, α, κ,ϖ, ζ, θ)(H)F (3.28)

In particular, the Hall terms are now decomposed with respect to F instead
of F−1 in (3.16), in agreement with the fact that they are smooth as B →
0. This is because the Goldstone mass, like the magnetic field, gaps the
system. Therefore, while in the spontaneous case the B to zero limit lead
to divergences, in the pseudo-spontaneous case the presence of the pinning
frequency prevent any blow-up as B → 0. Finally, we introduce one last
quantity for ease of notation

Γ = ω2
0χππ − ω2Pl (3.29)

which should not be confused with a momentum relaxation term in (3.26).
With this new set of definitions, and remembering the decomposition of

the frequency-independent transport coefficients in (3.16), we can write the
three independent AC conductivities. Following the same argument of the
spontaneous case, we take the independent correlators to be σ(ω), ϖ(ω) and
ζ(ω), while the remaining conductivities can be obtained by these from the
Ward identities (3.5). We find

σ̂(ω) = Ξ̂−1 ·
[
Γωwf σ̂ + ωn2

f σ̂ϕ − i(ω2 − ω2
0)χππσ̂

′ − nf (iΓρ̂+ ωF · σ̂′)
]

(3.30a)
ϖ̂(ω) = Ξ̂−1 ·

[
ωwf γ̂ + i(nf σ̂ϕ − F · σ̂′)

]
(3.30b)

ζ̂(ω) = Ξ̂−1

ω2
0χππ

·
[
ωχππσ̂ϕ − ωPl(F · ρ̂+ iωwf12) + iF · (nf σ̂ϕ − F · σ̂′)

]
(3.30c)

Ξ̂ = Γ(ωwf12 − iF · ρ̂) + ωnfF · σ̂ϕ − i(ω2 − ω2
0)χππσ̂ϕ − ωF 2 − σ̂′

(3.30d)
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Subsequently, we can again use the Ward identities to express the un-
determined hydrodynamic transport coefficients in terms of the DC values
of the conductivities which are not constrained by symmetries. In the
pseudo-spontaneous case, we see that the electric, thermoelectric and ther-
mal conductivities are unconstrained in DC, thus we use σ̂(0), α̂(0) and κ̂(0)
to express the transport coefficients

σ̂ = −Ψ̂−1 · π̂(0) (3.31a)

σ̂ϕ = Ψ̂−1 ·
[
w2

f12 + (F · π̂(0) − 2wf (α̂(0) + µσ̂(0))) · F
]

+ nfF (3.31b)

γ̂ = Ψ̂−1 · [F · π̂(0) − wf (α̂(0) + µσ̂(0))] + nf12 (3.31c)
Ψ̂ = µ2σ̂(0) + 2µα̂(0) + κ̂(0) (3.31d)

where we have also defined a matrix π̂(0) that mimics the determinant of
the DC thermoelectric matrix

π̂(0) = α̂2(0) − κ̂(0)σ̂(0) (3.32)

We can again check that, as the lattice pressure goes to zero Pl → 0,
we recover the expressions found in [212] with perfect agreement, after an
appropriate mapping of the transport coefficients.

3.5 Holographic model

In this section we describe the holographic computations of [1]. Because
holography is not the central topic of this thesis, and because I did not per-
sonally obtain these results, I will only briefly sketch the main points, without
explaining how holography works [22–24] or the details of the computations,
which can be found in the original paper [1].

3.5.1 Setup and background

From the holographic correspondence, the large N , large ’t Hooft cou-
pling λ regime of a d dimensional QFT is dual to the semiclassical limit of
asymptotically-AdS Einstein gravity in d+ 1 dimensions. We consider the
following Q-lattice action [241]

S =
�

d3+1x
√

−g

R− V [ϕ] − 1
2(∂ϕ)2 − Z[ϕ]

4 F 2 − 1
2Y [ϕ]

∑
i=1,2

(∂ψi)2


(3.33)

here F = dA is the electromagnetic field strength, ϕ is the dilaton field and
ψi are the translation symmetry breaking scalars, dual to the OI fields in
the hydrodynamic picture, which enjoy the shift symmetry ψi → ψi + ci.
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Following the hydrodynamic construction, we require a linear coordinate
dependence on the scalars

ψi = kxi xi = {x, y} (3.34)

which break spatial translations and shift symmetry to their diagonal U(1)
subgroup, i.e. translations are broken homogeneously, as discussed in Sec-
tion 3.2. With this ansatz, we look for background solutions for Aµ, gµν and
ϕ that depend only on the radial coordinate r.

We consider a background with a black hole solution in the interior, which
is dual to a thermal system

ds2 = 1
r2

(
−f(r) dt2 + dr2

f(r) + g(r) dx2
)

A = a(r) dt−By dx ϕ = ϕ(r)

(3.35)
with a constant magnetic field and non-zero charge density. We want these
solutions to be asymptotically AdS, this in turn constraints the form of the
functions V [ϕ], Z[ϕ] and Y [ϕ] as ϕ → 0. Subsequently, these asymptotics fix
value of the dilaton near the boundary r = 0

ϕ(r) = λr + ϕvr
2 + O(r3) (3.36)

which determines if translations are broken explicitly λ ̸= 0, or spontaneously
λ = 0, in the dual theory [203, 205, 209].

The first step now is to match the thermodynamics of the boundary QFT
with the background solution (3.35). We need to specify the temperature,
chemical potential, magnetic field and either the vev of the scalar field ϕv,
for the spontaneous case, or its source λ, for the explicit case. In particular,
following the holographic dictionary, the boundary behaviour of a(r) gives
the value of the chemical potential as the leading term and of the charge
density at the sub-leading order

a(r) = µ− nfr + O(r3) (3.37)

while the near-horizon expansion gives information about the temperature
and entropy density of the fluid, from the usual Gibbons–Hawking formula for
black-holes horizons. Employing the equations of motion for the background
one finds radially conserved quantities that can be associated with the lattice
pressure Pl and the magnetization density m. Then, matching the boundary
and horizon values of these conserved quantities we find a Smarr-type relation

εf = 2(sfT + µnf −mB − Pl + λϕv) (3.38)

3.5.2 Analytic DC conductivities

We now focus on the analytic computation of the DC values of the conduc-
tivities defined in hydrodynamics, both for the spontaneous and explicit
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case [206]. To do so we fluctuate about the background described above by
turning on a small, constant electric field and temperature gradient in the
spatial directions of the boundary QFT [242]. This is implemented as

δAx(r) = ax(r) − px(r)t δgtx = 1
r2 (hx(r) − p̄x(r)t) δgrx = 1

r
h̄x(r)

(3.39a)

δAy(r) = ay(r) − py(r)t δgty = 1
r2 (hy(r) − p̄y(r)t) δgry = 1

r
h̄y(r)
(3.39b)

In the spontaneous case we also need to turn on constant sources for the
axion fields

δψx(r) = χx(r)
r

− kδVxt δψy(r) = χy(r)
r

− kδVyt (3.40)

while for the explicit case these take the simpler form

δψx(r) = χx(r) δψy(r) = χy(r) (3.41)

without the sliding modes δVi. The coefficients with explicit time dependence
in (3.39) are fixed such that the time-dependent terms drops out of the
linearized equations of motion, i.e. we take

px(r) = p(0)
x + nf Ēxa(r) p̄x(r) = −nf Ēxf(r) (3.42a)

py(r) = p(0)
y + nf Ēya(r) p̄y(r) = −nf Ēyf(r) (3.42b)

where p(0)
i and Ēi are, for the moment, free constants. The former represent

the constant electric field, the latter the temperature gradient in the boundary
theory.

From the linearized equations of motions we can identify a set of four
radially conserved currents, which we denote as δJi(r) and δQi(r), related
to charge and heat transport. In particular, we can fix the free constants p(0)

i

and Ēi such that these bulk currents correspond to the vev of the electric and
canonical heat current in the boundary theory δJi(0) = limr→0 ∂rai(r) =
⟨Ji⟩.

In the spontaneous case, this requires that

p(0)
x = (sfT −mB + Pl) Ēx − B

nf
⟨Jy⟩ + δsx

nf
(3.43a)

p(0)
y = (sfT −mB + Pl) Ēy + B

nf
⟨Jx⟩ + δsy

nf
(3.43b)

δsi = kϕ2
vχi(0) (3.43c)
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where δsi correspond to the linear sources for the dual Goldstone fields. To
compute the DC conductivities we identify the boundary electric field Ei

and the thermal gradients ∂iT/T from the expansion

Ei = − lim
r→0

∂t

(
δAi + µr2

f(r)δgti

)
∂iT

T
= lim

r→0
∂t

(
r2

f(r)δgti

)
(3.44)

We can rewrite the expressions for the vev of the electric and heat current
at the boundary in terms of these sources while also using the properties
that they are radially conserved and, from there, we can read off the DC
conductivities. In the spontaneous case, for example, we find

σ(H)(0) = −nf α(H)(0) = − (sfT −mB − Pl) γ(H)(0) = −1 (3.45)

in agreement with the fact that these conductivities are constrained by Ward
identities to have these universal values at leading order in small ω (3.20).
We are specifically interested in κ̂(0), θ̂(0) and X̂(0), since these are the
non-universal DC conductivities that we used to fix the hydrodynamics
transport coefficients in (3.21). We can write them in terms of horizon data
as

κ(L)(0) = Zh(sfT − Pl)2

T
(
n2

f +B2Z2
h

) + 4πP 2
l

TsfYh
κ(H)(0) = −nf (sfT − Pl)2

T (n2
f +B2Z2

h)
− MQ

nfT

(3.46a)

θ(L)(0) = 4πIY

sYh
− (sfT − Pl)Zh

n2
f +B2Z2

h

θ(H)(0) = nf (sfT − Pl)Zh

n2
f +B2Z2

h

(3.46b)

X(L)(0) = −
(

4π
k2sfYh

+ Zh

n2
f +B2Z2

h

)
X(H) = nf

(n2
f +B2Z2

h)
(3.46c)

where Zh and Yh are the horizon values of the functions Z[ϕ] and Y [ϕ], while
Iy and MQ are radial integrals computed at the horizon related to the lattice
pressure and the magnetization. Further details can be found in the original
paper [1].

In the pseudo-spontaneous case the bulk radially-conserved electric cur-
rents are unchanged with respect to the spontaneous case, however the
identification of the constants p(0)

i is slightly modified, to account for the
different expansion of the axion fluctuations (3.41). This time we require

p(0)
x = (sfT −mB + Pl) Ēx − B

nf
⟨Jy⟩ − ⟨Ox⟩

nf
(3.47a)

p(0)
y = (sfT −mB + Pl) Ēy + B

nf
⟨Jx⟩ − ⟨Oy⟩

nf
(3.47b)

⟨Oi⟩ = kλ2χ′
i(0) (3.47c)
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The radially conserved bulk heat currents are also slightly modified for the
same reason, but we can relate boundary and horizon values for them too.
Again, we express the boundary electric and heat currents in terms of the
electric field and temperature gradient (3.44), while also taking their values
at the horizon. This allows us to obtain the zero-frequency limit of all the
conductivities, e.g.

σ(L)(0) =
k2sfYh

(
k2sfYhZh + 4π(n2

f +B2Z2
h)
)

(4πnfB)2 + (k2sfYh + 4πZhB2)2 (3.48a)

σ(H)(0) = −
8πnf

(
k2sfYhZh + 2π(n2

f +B2Z2
h)
)

(4πnfB)2 + (k2sfYh + 4πZhB2)2 (3.48b)

for the electric transport, and similar results hold for the other DC conduc-
tivities too.

3.5.3 AC conductivities and matching hydrodynamics

To compute numerically the AC conductivities, both in the spontaneous and
explicit case, we need to turn on linear sources for the various fields, and
impose ingoing boundary conditions and regularity at the horizon. Details
on the numerics and the explicit steps can be found in the original paper [1].

Spontaneous case

There are in principle twelve possible conductivities (3.15) we could compute
for the spontaneous case, however we will focus only on the thermal ⟨QiQj⟩,
the thermal-Goldstone ⟨QiOJ⟩ and the Goldstone-Goldstone correlators
⟨OIOJ⟩. The real part of the AC hydrodynamic conductivities are computed
by using the results in Section 3.3 upon substituting the transport coefficients
in terms of the DC values of the conductivities computed from holography
(3.46). We can see the agreement in Figure 3.4 is excellent in the shown
regions. Our hydrodynamic results seem very robust, matching with great
accuracy up to very small values of the temperature and to relatively high
magnetic field. The off-axis peak that appears in the thermal conductivity
at ω > 0 is also present in the electric and thermoelectric conductivities, and
corresponds to the cyclotron mode induced by the magnetic field [14].

At zero magnetic field the Goldstone-Goldstone correlator has a double
pole at ω = 0 [208], which can be observed by taking the B to zero limit of our
longitudinal conductivity (3.18). This means that, at zero magnetic field, the
real part or the correlator has a peak of finite width in its spectrum. When
the magnetic field is non-zero one of the pole becomes gapped and describes
a cyclotron mode, leaving an isolated pole at ω = 0. The imaginary pole
corresponds, via Kramers–Kronig relations, to a delta function in the real
part of the conductivity, which is why the Goldstone-Goldstone conductivities
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Figure 3.4: AC correlators for the spontaneous case at k/µ = 10−1. Grey dots are
numerical data, solid lines are the analytic expressions from hydrodynamics, and
the dashed grey line correspond to the DC values. Left column: The thermal
conductivities κ̂(ω) at T/µ = 0.06 and B/µ2 ≈ 4.4 × 10−4. Central column: The
heat-Goldstone correlators θ̂(ω) at T/µ = 0.04 and B/µ2 ≈ 3.9 × 10−4. Right
column: The Goldstone-Goldstone correlators X̂(ω) at T/µ = 0.02 and B/µ2 ≈
3.5 × 10−4.

X(L,H)(ω) in Figure 3.4 are smooth all the way down to ω = 0 without any
sign of divergence.

Pseudo-spontaneous case

In the explicit and pseudo-spontaneous case the AC hydrodynamic conductiv-
ities are not completely fixed in terms of the DC values of the thermoelectric
correlators. The holographic zero-frequency limits of σ̂(0), α̂(0) and κ̂(0) in
terms of horizon data allows us to fix the hydrodynamic transport coefficients
(3.31) (and consequently of the AC conductivities) up to the constant value
of the pinning frequency ω0, which is not constrained in the hydrodynamic
model and must be computed numerically.

To fix this parameter one can use two different method: either by studying
the holographic spectrum of the quasinormal modes in the complex plane
and solving for ω0, or by simply taking any low-frequency AC correlator and
requiring that the hydrodynamic results agrees with the values computed
numerically from holography. The two methods agree perfectly, and we find
the dependence in Figure 3.5 for the pinning frequency as a function of the
holographic explicit breaking parameters λ. We found by best fit a square-
root dependence of the pinning frequency on the ratio |λ/µ|, in agreement
with previous computations at zero magnetic field [205] and more general
quantum field theory arguments [202]. Furthermore, as the temperature
increases, the pinning frequency becomes smaller and smaller.

We now focus on the electric and thermal conductivities, plotted in
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Figure 3.5: Pinning frequency against λ/µ at k/µ = 0.1, B/µ2 = 10−2, and
T/µ = 5 × 10−2. The solid line is a fit to the numerical points, which gives a
dependence on

√
|λ|/µ.

Figure 3.6: Conductivities in the (pseudo-)spontaneous regime. Left: AC longi-
tudinal thermal conductivity at λ/µ = −10−5, k/µ = 0.1, B/µ2 ≈ 3 × 10−4, and
T/µ = 10−2. Notice the two peaks at ω > 0. Right: The frequency at which the
maxima (red) and minima (blue) appear in the hydrodynamic longitudinal electric
charge conductivity (3.30) as a function of T at λ/µ = −10−5, k/µ = 0.1, and
B/µ2 = 10−3. At very low temperatures we find two peaks for ω > 0, and also a
minimum at ω = 0 and a second one between the maxima. As the temperature is
increased, the two pseudo-Goldstone modes merge around T/µ ≈ 0.083, to become
a single Drude-like peak at zero frequency. This zero-frequency peak eventually
drops out of the conductivity approximately at T/µ ≈ 0.237.
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Figure 3.7: AC electric conductivities at B/µ2 = 10−3, T/µ = 10−1, and k/µ = 10−1.
As before, red lines are the analytic expressions obtained from hydrodynamics, while
grey dots are numerical data. Left: The longitudinal conductivities in the pseudo-
spontaneous regime (top), where λµ/ϕv ≈ 0.004, and in the strongly explicit regime
(bottom), where λµ/ϕv ≈ 0.95. Right: The Hall conductivities in the same regimes.

Figure 3.6 and 3.7, which again show a very good match between the analytic
hydrodynamic computation (3.30) and the numerical holographic results. In
the pseudo-spontaneous case it is possible to find two off-axis peaks at ω > 0,
see Figure 3.6 for an example in the longitudinal thermal conductivity.

To better understand this point we also plotted, this time for the electric
conductivity, the behaviour of the extrema (maxima in red, minima in
blue) as a function of temperature. We can then loosely identify three
different regimes: the low temperature regime is the phonon-dominated
regime, in which we observe two off-axis peaks, specifically one is the cyclotron
peak, while the low-frequency one is the contribution due to the pinned
Goldstones, and also a minimum at ω = 0. The two peaks and their
associated quasinormal modes can be understood, at least on a qualitative
level, as the magnetophonon and magnetoplasmon resonance that appear in
the hydrodynamic regime of a weakly-pinned Wigner crystal [213]. As we
increase the temperature we enter the Drude regime, in which the Goldstone
peak moves towards ω = 0 to create a Drude-like peak (remember that the
pinning frequency decreases with increasing T ), while keeping the second
off-axis peak qualitatively the same. At even higher temperature we are
in the cyclotron regime: the second minimum moves at ω = 0 and washes
away the Drude peak, leaving only one single off-axis maximum given by the
cyclotron resonance of magnetohydrodynamics with momentum relaxation
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Figure 3.8: Longitudinal electric conductivity against frequency at small frequencies
in the Drude regime for the values of the parameters λ/µ = −10−5, k/µ = 10−1,
T/µ = 0.3, and B/µ2 ≈ 0.066. The solid red line represents the hydrodynamic
expression, the grey dots are numerical data, while the dashed Green line shows a
pure Drude-like approximation ∼ 1/(ω − iΓ).

[14].
Notice that the above definition of the Drude regime should be taken

with care. In particular, it is not the standard Drude regime that appears at
zero magnetic field in the presence of some effective collective momentum-
relaxation rate, see Figure 3.8. Indeed, while momentum decay leads to
a single purely imaginary quasinormal mode, the ω = 0 peak in what we
call Drude regime is given by the superposition of two complex quasinormal
modes [212]. In particular, if one considers hydrodynamics with momentum
relaxation and a magnetic field, one does not find a Drude peak at zero
frequency, which appears only when the dynamics of the Goldstone fields is
relevant, but a cyclotron resonance corresponding to a pair of quasinormal
modes.

3.5.4 On the spurious pole

The formalism we employed in this chapter predict an extra gapped pole [41,
214], compared to older results [212]. This pole is related to the fact we are
working at non-zero lattice pressure and survives even at zero magnetic field,
indeed looking at (3.18) we see that there is an extra pole in the denominator
of the spontaneous hydrodynamic conductivities, which takes the analytic
form at B = 0

ω = −
i (Pf + Pl + εf )σϕ

(L)
Pl (Pf + εf ) (3.49)

In the original papers in which this formalism was developed [41, 214] the
authors considered a small-frequency expansion of the two-point functions,
valid in the hydrodynamic regime at B = 0, so that this pole effectively
disappeared from the spectrum. In the present case, however, we cannot
take the same low-frequency expansion, because the presence of the magnetic
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field gaps the system and a low-frequency expansion would wash away all
the information regarding the cyclotron mode.

Instead, what we can do is to work with the weaker definition of what hy-
drodynamic poles are, as discussed in Section 2.2.5. Namely, all we care about
is that this pole (and eventually other non-hydrodynamic poles), appears
deep in the complex frequency plane, far from the hydrodynamic cyclotron
and phonon modes. Indeed, we checked numerically using holography that
this pole has a large imaginary part and does not appear in the spectrum
in the region predicted by hydrodynamics, furthermore other quasinormal
modes become relevant before any hints of this spurious pole, hence it plays
no role in characterizing the diffusive correlators in the hydrodynamic regime.

One possibility is that this spurious pole might appear in the hydro-
dynamic expressions as an artefact of our frame choice. Indeed, this can
happen even in standard hydrodynamics, see e.g. the discussion in [74],
in which the charge-charge two-point function in the Eckart frame shows
exactly this unwanted behaviour. To exclude this possibility we computed the
hydrodynamic analytic correlators at zero magnetic field in two other frames,
a pseudo-Eckart frame (keeping γ(L) as the only transport coefficient in the
current constitutive relation) and the true Eckart frame, where Jµ = nuµ,
however even these two frames predict the same lattice-pressure-dependent
spurious pole, which does not seem to be related to frame ambiguities.

3.6 Summary, discussion and outlook

In this chapter we developed a hydrodynamic theory for CDW in the presence
of a strong external magnetic field B ∼ O(1). We studied both the spon-
taneous case, in which translation symmetry is spontaneously broken and
gives rise to a true Goldstone dynamics, and the pseudo-spontaneous/explicit
case, in which spatial translations are broken explicitly by a small parameter,
giving origin to pseudo-Goldstone physics.

Because we were interested in matching the hydrodynamic results against
a holographic Q-lattice model, we included in our expressions a lattice pres-
sure term, by generalizing the formalism developed in [41, 214]. Furthermore,
to match more easily the numerical results from holography and the analytic
hydrodynamic expressions, we followed the method of [217], based on Ward
identities, to express the hydrodynamic transport coefficients in terms of
the DC values of the conductivities. Given that the DC transport can be
computed analytically from holography in terms of horizon data, we obtained
a set of AC hydrodynamic conductivities which are fully determined in terms
of horizon data and a single undetermined parameter (in the explicit case),
the pinning frequency ω0, which must be computed numerically in our model.

Our hydrodynamic and holographic results agree excellently over a broad
range of values of the parameters, up to small temperature and relatively
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high magnetic field. Furthermore, at zero lattice pressure and zero magnetic
field, we recover all the results previously known in the literature [41, 212].

Since the publication of the paper this chapter is based on, many other
research works have been published on the topic [39, 40, 156, 160, 243], see in
particular the reviews [15, 244]. These works generalized our results regarding
the relation between phonon relaxation and pinning frequency (3.25) using
locality and the second law of thermodynamics. Furthermore, [39, 40] found
new transport coefficients that are missing from our pseudo-spontaneous
description using an approach based on spurion fields. Nonetheless, the accu-
racy of our hydrodynamic description in matching the Q-lattice holographic
model we considered suggests that these missing transport coefficients are
very small in our system.
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Chapter 4
Electrically-driven fluids

“Nature doesn’t care what we call it, she just keeps on
doing it whatever ways she wants”

Feynman, Feynman Lectures on Physics

4.1 Introduction

In this chapter we focus on a very simple physical system comprised of a
charged fluid that moves under an externally applied electric field; this is
the typical case discussed in the Drude model for a gas of weakly-coupled
electrons to describe the conductivity of metals [115, 116]. Here we revisit
a similar construction, but from the point of view of hydrodynamics: we
consider the transport of a charged fluid across a piece of wire with an
external linear electric field E⃗, we wait a long time until the system reaches
a steady states, and we study the stationary regime.

When momentum is an exactly conserved quantity, hydrodynamics pre-
dicts that the only stationary solutions in the presence of an external electric
field, i.e. the hydrostatic time-independent flows we discussed in Section 2.1.7,
are such that spatial gradient of the chemical potential cancel the external
field [245, 246], see (2.37). In this case the electric field effectively disappears
from the dynamics, cancelled by the derivative of the chemical potential,
while on the other hand the velocity of the fluid is totally unconstrained in
magnitude and can take on arbitrary values independent on E⃗.

This is very different to what we would expect to find in real devices,
which are open systems and, when an electric field is applied externally so
that a current starts to flow, the system exchanges heat and momentum with
the environment to reach a steady state. In this paper we try to describe
this real-world situation, which standard hydrodynamics fails to capture, by
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focussing on fluids without boost symmetry [101, 247–251] and considering
stationary time-independent states in which an arbitrary external electric
field and the fluid polarization co-exist.

We find a new class of hydrostatic theories that incorporate the presence
of an order zero external electric field, without having it constrained to
balance the chemical potential gradient, while also including the effect of
relaxations in the fluid theory which pin the fluid velocity. These stationary
states present a non-zero ground-state DC conductivity and heat transport,
suggesting that they are a more accurate representation of what happens in
standard DC measurements.

We have already claimed that the only stationary state in standard
hydrodynamics, in the presence of a background electric field, can be achieved
when the electric field cancels the chemical potential gradient. This is because
if this condition fails, then the electric field keeps adding momentum and
energy to the system without limit, until the sample melts. To look for more
generic solutions we must relax some of the assumptions of hydrodynamics, in
particular we will assume that the system can exchange heat and momentum
with external sinks, so that some steady state can be reached.

We are agnostic on the possible microscopic origin of the sinks to keep
our hydrodynamic description as general as possible (could be some UV
degrees of freedom which, upon integrating out, lead to momentum decay,
as was shown in the last chapter in (3.26), or simply the system being open).
We take the sinks to be order zero in derivatives and weak, in the sense that
they do not affect the thermodynamics of the fluid and are to be understood
as small corrections to the equations of hydrodynamics. Furthermore, we will
assume that the corresponding susceptibilities, which should be understood
as varying with respect to the hidden degrees of freedom, are small and can
be ignored, so that the corresponding degrees of freedom are frozen, and
their dynamics is not relevant in the hydrodynamic regime. We will however
assume that, in general, the relaxation rates might depend on the other
thermodynamic quantities, it is only their dependence on the UV degrees
of freedom that is hidden (see [252] for a similar setup related to charge
relaxations in the presence of chemical reactions).

Among other things, one of the most important effect of the relax-
ations/sinks, is that their presence break the Lorentz symmetry, in particular
they break boost invariance. To explain this better, consider the case of
standard hydrodynamics without momentum relaxation: in this case station-
ary states (that correspond to global equilibrium, in the absence of external
sources) are obtained when the thermodynamic quantities are constant in
spacetime µ = const, T = const and the velocity too is constant and arbi-
trary, namely all solutions with different velocities are equally good equilibria,
related by boosts (and eventually rotations). However, in the absence of
external sources, momentum relaxation pins the equilibrium velocity of the
system to zero, which is then the only solution and cannot be related to
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other solutions via boosts. The same argument holds even with external
sources: momentum relaxation and the source still constraint the velocity to
take a specific stationary value, breaking the boost symmetry.

We are thus forced to use the boost-agnostic formalism, which means
that the spatial velocity is now part of the equilibrium thermodynamics of
the system. This should be contrasted with the more standard Galilean or
Lorentz symmetry, in which the velocity can be set to zero via boosts, so
that is not part of the thermodynamics. In this context, following Drude
intuition, we expect to find a stationary state in which the fluid velocity is
(implicitly) constrained by the other parameters of the system

vi = ΩE
(
T, µ, v⃗2, E⃗2, v⃗ · E⃗

)
Ei − Ωµ

(
T, µ, v⃗2, E⃗2, v⃗ · E⃗

)
∂iµ (4.1)

where ΩE,µ are, for the moment, undetermined functions. The chemical
potential term appears because its gradient acts as an effective electric field
for the system that can also drive the fluid.

Although the relaxation rates are taken to be order zero in derivatives,
they are still relatively small in amplitudes. This is necessary not to com-
pletely destroy the hydrodynamic picture [244]. This is similar to what
happens with order-zero magnetic fields, which must not be so large to
confine the dynamics only to the lowest Landau levels, otherwise the hydro-
dynamic description is not applicable. We can quantify this assumption by
looking at the decay of the modes, a feature of many hydrodynamic systems
[50]. In the present context it is due to the effective relaxations, but mode
decay also appears in the presence of external magnetic fields (cyclotron
modes) [14], charge density waves (as discussed in the last Chapter 3) or
Wigner crystals [40, 213]. We remind here the same argument discussed in
Section 2.2.5: what is important for the applicability of hydrodynamics is not
that the modes are weakly decaying, but rather that the non-hydrodynamic
modes are far enough in the complex frequency plane so that they can be
ignored for the low-energy dynamics. Because in practice it is not easy to
know the position of the first non-hydrodynamic mode, we can set for a more
pragmatic approach and simply check whether our hydrodynamic models
match with experiments.

We decided to focus on the hydrostatic regime for three reasons: the first
one is practical, because it is easier, since we can use simple tools such as
the hydrostatic generating functional [98], secondly because of the strong
interest in describing the physical situation of a system that reaches a steady
state upon application of a constant external electric field, and lastly because
the hydrostatic constraints can be regarded as the building blocks to then
construct the full hydrodynamic theory. Indeed, dissipative corrections in
hydrodynamics can always be understood as fluctuations away from the
hydrostatic regime, see the discussion in Section 2.1.8.

In this chapter we will follow the standard approach for non-conservative
systems: first in Section 4.2 we will compute the constitutive relations for
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the ideal boost-agnostic fluid in the presence of a strong electric field in
the absence of relaxation rates. To achieve this we can use the hydrostatic
generating functional, suitably generalized for the current symmetries. Then,
under the assumptions that the only effect of the relaxations is to modify
the equations of motion, in Section 4.3 we will add sinks to the system, and
we will check how the theory must be modified to account for their presence.
Finally, in Section 4.4 we will sketch the effect of dissipative corrections on
our formalism and discuss how the thermoelectric transport of the fluid is
modified.

4.2 Boost-agnostic fluids

We argued for the need of boost-agnostic hydrodynamics to properly describe
fluids with momentum relaxation. In this section we explain the formalism
and its covariant description in terms of geometric structures. These quan-
tities can then be used to construct the hydrostatic generating functional
presented in Section 2.1.7 for fluids without any boost symmetry, which
allows us to obtain the hydrostatic constitutive relations at order zero and
one in derivative expansion.

We will consider the simple case of a fluid with (almost-)conserved stress-
energy tensor and U(1) current, in the presence of a strong background
electric field E ∼ O(1) which polarizes the fluid.

4.2.1 Aristotelian geometry

Aristotelian geometry was first introduced in [253] to describe gravity without
boost symmetry. This geometry naturally couples to boost-agnostic fluids
and leads, via variational principle, to a generating functional for such
hydrodynamic theories. This should be compared to the pseudo-Riemann
description that leads to Lorentz-symmetric fluids.

In this geometry, spacetime is a manifold on which two different geometric
quantities live: a clock 1-form τµ and a symmetric covariant tensor hµν with
signature (0, 1, 1, . . . , 1), which acts as a spatial metric. This geometry
naturally incorporates space and time on different ground, thus allowing the
description of continuous systems which do not have boost symmetry. The
physical meaning of τµ is that of defining a clock in the laboratory frame,
which allows us to separate the spatial part of the fluid velocity, as we will
see.

This geometry contains Carrollian, Galilean or Lorentzian geometries
as suitable limits. In particular, the geometric structures defined above do
not have tangent space transformations rule. In the Carrollian case [254]
it is τµ which transforms under local boosts, and hµν does not, while in
Newton-Cartan it is the opposite [255, 256]. Riemann geometry instead
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appears if we require that both τµ and hµν transform, but in such a way that
the object γµν = −τµτnu+ hµν is invariant under Lorentz boosts.

We can decompose the spatial metric into vielbeins

hµν = δabe
a
µe

b
ν a, b = 1, . . . , d (4.2)

where d is the number of spatial dimensions. This means that, contrary
to Riemann geometry, the vielbeins are not square matrices and cannot be
inverted directly to reconstruct the inverse metric. This is obvious by the fact
that hµν has a zero eigenvalue and is not a real metric. We then construct
the square matrix (τµ, e

a
µ), which is instead invertible, and we denote its

inverse as (−νµ, eµ
a). The vielbeins, vectors and covectors obey the following

relations

νµτµ = −1 νµea
µ = 0 eµ

aτµ = 0 eµ
ae

b
µ = δb

a (4.3)

together with the completeness relation, i.e. the requirement that (−νµ, eµ
a)

is indeed the inverse of (τµ, e
a
µ)

−νµτν + eµ
ae

a
ν = δµ

ν (4.4)

From the inverse vielbeins we can define a (2, 0) tensor

hµν = δabeµ
ae

ν
b (4.5)

Contrary to our Lorentzian intuition, this is not the inverse of hµν , but it is
a related object that satisfies

hµρh
ρν = δν

µ + νντµ (4.6)

This last equation shows that hµρh
ρν acts as a projector orthogonal to the

clock form τµ. For this reason we can still think of hµν as the inverse metric
of hµν , but only on the spatial hypersurfaces normal to the clock form τµ.

To describe changes in this geometry, we need to provide a notation of
covariant derivative. Following our intuition based on Riemannian geometry,
we introduce a covariant derivative which is metric compatible with respect
to certain spacetime quantities, namely we constrain it to obeys

∇µτν = 0 ∇µh
νρ = 0 (4.7)

This condition fixes the connection to take the form

Γλ
µν = −νλ∂µτν + 1

2h
λκ (∂µhνκ + ∂νhνκ − ∂κhµν) + 1

2h
λσYσµν (4.8)

where the tensor Yσµν is arbitrary, but it must satisfy the condition(
hρσhλν − hλσhρν

)
Yσµν = 0 (4.9)
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This should be compared to pseudo-Riemannian geometry, in which metric
compatibility ∇µgαβ = 0 and torsion freedom Γλ

[µν] = 0 uniquely fix the
connection to be the Levi-Civita one.

To proceed and fix the connection uniquely, we impose metric compati-
bility also on the dual objects νµ and hµν

∇µν
ν = 0 ∇µhνρ = 0 (4.10)

For this particular choice, the affine connection can be written as

Γλ
µν = −νλ∂µτν + 1

2h
λκ (∂µhνκ + ∂νhνκ − ∂κhµν) − hλκτνKµκ + Cλ

µν (4.11)

where Kµν is the extrinsic curvature, defined as

Kµν = −1
2Lνhµν (4.12)

in terms of the Lie derivative along the direction of νµ. The other undefined
object is Cλ

µν , which obeys

Cλ
µντλ = 0 Cλ

µνhλρ + Cλ
µρhνλ = 0 (4.13)

In particular, without loss of generality, we can now pick Cλ
µν = 0, which is

indeed a solution of the above constraints. Our final choice of the connection
is thus

Γλ
µν = −νλ∂µτν + 1

2h
λκ (∂µhνκ + ∂νhνκ − ∂κhµν) − hλκτνKµκ (4.14)

which is not torsion free Γλ
[µν] ≠ 0, hence torsion can appear as a tensor

structure to construct hydrostatic scalars.
We will use this curved-space Aristotelian geometry to obtain the hy-

drostatic constitutive relations, however because we are interested in flat
spacetime, at the end of the computations we take the tensor structures to
take the following flat-space values

τµ = δ0
µ hµν = δi

µδ
j
νδij νµ = −δµ

0 hµν = δµ
i δ

ν
j δ

ij (4.15)

This means that the laboratory is stationary with time form (1, 0, . . . , 0)
and that hµν is understood as an Euclidean spatial metric. In Cartesian
coordinates furthermore, ∇µ = ∂µ as the covariant derivative reduces to the
partial one.

4.2.2 Geometry, thermodynamics and hydrostatic flows

To construct the hydrostatic generating functional, we first need to express
the thermodynamic fields in terms of the basic geometric objects in the
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theory. In our case we consider the Aristotelian geometry of the previous
section, together with a U(1) gauge field Aµ, hence the full set of geometric
quantities which we can use is (τµ, hµν , Aµ).

To define the notion of stationarity we need to introduce a timelike Killing
vector βµ that parametrizes time translations, which are an isometry of
spacetime. Timelike and future-directed, in this context, means that τµβ

µ >
0. This means we must impose that the Lie derivative along the thermal
Killing vector must vanish when acting on the geometric quantities of the
theory, which will later be interpreted as the sources for the hydrodynamical
fields. Namely, we require

Lβτµ = 0 (4.16a)
Lβhµν = 0 (4.16b)
LβAµ = 0 (4.16c)

which means that the sources are time-independent and stationary, with
respect to βµ. Furthermore, we require that the field F = dA obeys the
Bianchi identity

∂[µFνρ] = 0 (4.17)

Having identified the geometric objects as sources of the theory, we can
now define the thermodynamic variables in terms of the sources and of the
Killing vector. Following the usual prescription we define the temperature T
and chemical potential µ as

T = 1
τµβµ

(4.18a)

µ = T (Aµβ
µ + Λβ) (4.18b)

where, exactly as in Section 2.1.7, Λβ is a gauge parameter that preserves U(1)
gauge invariance. Finally, we also define the fluid velocity to be proportional
to the thermal vector, and we normalize the fluid velocity with the clock
form such that

uµτµ = 1 (4.19)

which uniquely fixes the proportionality coefficient between the fluid four-
velocity and the Killing vector as

uµ = Tβµ (4.20)

We can also use the completeness relation (4.4), together with the normal-
ization condition (4.19), to separate the spatial part of the fluid velocity

uµ = −νµ + vaeµ
a vµ = uµea

µ (4.21)

where we defined the spatial velocity as v⃗ = vaeµ
a∂µ. In the flat spacetime

limit the fluid four-velocity simply reduces to uµ = (1, vi). We emphasize
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that the velocity va is in general non-zero due to the presence of the fixed
background clock-form τµ, which forbid changes of frame that set the spatial
velocity to zero, contrary to what happens in the relativistic or Galilean case.

We also need to properly define the electric field in terms of the field
strength Fµν . We take the relations between the two to be

Eµ = −Fµνν
ν Fµν = 2∂[µAν] = Eµτν − Eντµ Ea = eµ

aEµ (4.22)

which in flat spacetime reduces to Eµ = (0,Ei), as it should. In this definition
we decomposed the field strength with respect to the laboratory velocity
νµ, therefore the electric field Eµ is measured in the laboratory frame. This
is different from the usual decomposition in terms of the covariant Eµ and
Bµ (2.34) used for relativistic systems: usually Eµ = Fµνu

ν and Bµ are the
electromagnetic fields in the comoving frame of the fluid, and indeed for
non-zero fluid velocity Eµ can be expressed in terms of both the electric and
magnetic field in the laboratory, due to Lorentz symmetry. In particular, in
the relativistic decomposition, Eµ is always normal to the fluid four-velocity
Eµu

µ = 0, which is not true in our laboratory-frame decomposition.
We now have all the tools to recast the Killing conditions (4.16) as

constraints that the thermodynamic fields must obey in order for the fluid to
be in hydrostatic equilibrium. In particular, from the first equation Lβτµ = 0
we obtain

Lβτµ = 0 =⇒ ∂µT

T
− uν (∂ντµ − ∂µτν) = 0 (4.23)

We can also rewrite this expression in an explicitly covariant form as

2uνΓρ
[νµ]τρ = ∇µT

T
(4.24)

in terms of covariant derivative and torsion1. This relation means that
certain components of the torsion tensor can be written, in the hydrostatic
limit, as temperature derivatives. In the flat spacetime limit, in Cartesian
coordinates, this simply reduces to

∂µT = 0 (4.25)

which means that temperature must be constant in spacetime for the fluid
to be stationary.

We can now repeat the same computation for the chemical potential
as defined in (4.18). Using the Killing equations we find the hydrostatic
constraint

LβAµ = 0 =⇒ Eµ − T∂µ
µ

T
= Eνu

ντµ (4.26)

1Indeed, torsion is related to the translation algebra as [∇µ, ∇ν ] = −T ρ
µν∇ρ, hence the

result above makes intuitive sense.
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This expression is reminiscent of the corresponding hydrostatic constraint in
the Lorentzian case (2.37), which we rewrite here for comparison purpose

Eµ − T∂µ
µ

T
= 0 (4.27)

We see that in both cases the external electric field must be compensated by
the derivatives of temperature and chemical potential in order for the fluid
to be stationary. This makes intuitively sense, since otherwise an imbalanced
electric field would drive the fluid out of equilibrium by continuously adding
energy and momentum to it. In the flat spacetime limit the above Killing
condition simply reduces to

∂tµ+ vi∂iµ = 0 (4.28a)
Eiv

i + ∂tµ = 0 (4.28b)
Ei − ∂iµ = 0 (4.28c)

in which we used that ∂µT = 0. The first constrain can be obtained from
the other two, hence they are not all independent. The first one is simply
the usual conservation of scalar quantities along the fluid flow, while the
third one expresses the fact that the external electric field must be balanced
against the gradient of the chemical potential.

Expression (4.26) and its flat spacetime limit inherit an unexpected
feature from its Lorentz counterpart. Specifically, one of the implication
of the above formula is that the electric field and the chemical potential
gradient must always have the same derivative counting, otherwise they
could not cancel on hydrostatic flows [245]. This condition is straightforward
when the electric field is assumed order one in derivative, because then the
chemical potential gradient keeps its naive scaling and must also be order
one in derivatives. However, in the present case, as in [245], the electric
field is taken to be large and order zero in derivatives. This means that
∂µ ∼ O(1) must also be order zero in derivative counting, contrary to the
naive expectation. We remark that although the two quantities are order
zero in derivatives, when the fluid is not in a stationary state the difference
is always at least order one in derivatives

Ei − ∂iµ ∼ 0 + O(∂) (4.29)

Which means that any dissipative correction, hence any fluctuation away from
the hydrostatic regime, must be at least order one in derivatives, following
the common expectation.

We can now consider the implication of the Killing conditions on the
electric field, and we find

LβEµ = 0 =⇒ 0 = uν∂νEµ + Eν∂µu
ν − Eνu

ν

T
∂µT (4.30)
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In the flat spacetime limit, in Cartesian coordinates, this reads as

0 = ∂tEi + vj∂jEi + Ej∂iv
j Ei∂tv

i = 0 (4.31)

As we mentioned earlier, the electric field is also always constrained by the
Bianchi identity dF = 0, which in the decomposition (4.22) reads

0 = ∂[µEν]τρ + Eν∂[µτρ] + ∂[νEρ]τµ + Eµ∂[ρτν] + ∂[ρEµ]τν + Eρ∂[ντµ] (4.32)

and in flat spacetime reduces to the simple requirement

∂jEi − ∂iEj = 0 (4.33)

namely, the electric field must be irrotational.
Finally, the last quantity we have to worry about is the velocity field.

Constraints on uµ can be more easily obtained from imposing the Killing
condition on the νµ and hµν . The first one gives

Lβν
µ = 0 =⇒ 0 = uν∂νν

µ − νν∂νu
µ + uµνν ∂νT

T
(4.34)

which, in flat space, becomes
∂tv

i = 0 (4.35)

The last constraint comes from imposing the Killing condition on hµν and
reads

Lβhµν = 0 =⇒ 0 = Luhµν − uρ

T
hρν∂µT − uρ

T
hρµ∂νT = 0 (4.36)

In flat space it reduces to
∂ivj + ∂jvi = 0 (4.37)

which corresponds to the vanishing of the shear tensor.
All the conditions we found above are obvious generalizations of the

constraints obtained in 2.1.8 for relativistic fluids. Exactly like in the Lorentz
case, we can readily see (at least intuitively), that any fluctuation away from
these hydrostatic constraints will give rise to dissipative corrections.

Summary of the hydrostatic conditions in flat spacetime. For ease
of reference, we report here all the hydrostatic conditions that we found,
specifically in the flat spacetime, Cartesian-coordinates limit.

Any scalar quantity must not change along the fluid flow, hence all scalars
are such that Lu(. . . ) =

(
∂t + vi∂i

)
(. . . ) = 0. Furthermore, we showed that

∂µT = 0 ∂iEj − ∂jEi = 0 ∂ivj + ∂jvi = 0 (4.38a)
∂tv

i = 0 ∂tEi + vi∂jEi + Ej∂iv
j = 0 Ei − ∂iµ = 0 (4.38b)
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4.2.3 Constitutive relations and thermodynamics

We can finally turn to the computation of the constitutive relations for our
fluid using the hydrostatic generating functional. To proceed, following the
general prescription, we write the most generic functional that depends on the
sources W = W [τµ, hµν , Aµ] in terms of diffeomorphism and gauge invariant
scalars quantities of the theory, constructed from the diffeomorphism and
gauge invariant hydrodynamic fields defined in (4.18). At order zero in
derivatives the generating functional W(0) can be written as

W0[τ, h,A, F ] =
�

dd+1x eP (T, µ,E2, u2,E · u)

=
�

dd+1x P (T, µ, E⃗2, v⃗2, v⃗ · E⃗) (4.39)

where the second line is the flat spacetime limit and e = det(τµ, e
a
µ). Notice

that we also included F = dA as a source: although obviously it is not
independent of Aµ, F (which is order zero in derivatives with our counting)
can be understood as the source term for the polarization tensor. The
polarization can also be obtained from varying with respect to Aµ, but the
computation becomes much more involved.

In the above expression we defined E2 = EµEνh
µν and u2 = uµuνhµν . In

general, we will take hµν and hµν to raise and lower indices of Eµ and uµ,
therefore uν = uµhµν and Eν = hµνEµ

2.
By varying the above generating functional with respect to the sources

we find the one-point functions

δW0[τ, h,A, F ] =
�

dd+1xe

(
−Tµδτµ + 1

2T
µνδhµν + JµδAµ + 1

2M
µνδFµν

)
(4.40)

where we identify Tµ with the energy current, Tµν with the symmetric
stress-momentum tensor, Jµ is the usual U(1) charge current and Mµν the
antisymmetric polarization-density tensor. As mentioned below (4.39), inte-
grating by part the last term gives a contribution to the current proportional
to the derivative of the polarization tensor, however keeping them separate
in this form is more convenient.

Following [248] we can construct the standard stress-energy-momentum
tensor from a combination of the energy current Tµ and the stress-momentum
tensor Tµν

Tµ
ν = −Tµτν + Tµρhρν (4.41)

This stress-energy tensor is symmetric only in its spatial indices, because we
are assuming isotropy and rotational invariance of the microscopic theory,

2We remind that hµνuν = hµνhναuα ̸= uµ, because hµν is not the inverse matrix of
hµν , and similarly for Eµ.
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however it is not symmetric in the time indices, because Lorentz boosts are
not a symmetry and the associated Ward identity Tµ0 = T 0µ fails.

We can also decompose the polarization tensor following the electromag-
netic field strength decomposition (4.22) as [245]

Mµν = νµPν − νµPµ (4.42)

where Pµ is the polarization vector, and we are assuming that there are no
contributions due to the magnetization, since we are working at zero external
magnetic field.

One final comment on the generating functional is in order: in the
theory there are no parity-breaking parameters, hence all the terms (and
the generating functional itself) are P-even. However, the same is not true
for the time-reversal symmetry. Namely, the velocity vi which is now part
of the thermodynamics is T -odd, and consequently the scalar E⃗ · v⃗ is also
T -odd, thus the pressure and all other derived thermodynamic quantities
do not have a definite sign under time-reversal symmetry. This is similar to
the case discussed in [245], in which the scalar B · E breaks time-reversal
(and parity). Usually imposing T -reversal symmetry constraints the number
of possible terms in the constitutive relations, however in the present case
this does not happen and requiring T -symmetry only makes the expressions
longer, without any real gain, therefore we will not take the square of the
T -odd scalar.

The equations of motion on generic background are obtained by simply
imposing that the generating functional W(0) should be diffeomorphism and
gauge invariant. We arrive at

e−1∂µ

(
eTµ

ρ

)
+ Tµ∂ρτµ − 1

2T
µν∂ρhµν = FρµJ

µ (4.43a)

e−1∂µ (eJµ) = 0 (4.43b)

which, in the flat spacetime limit, reduce to the standard hydrodynamic
conservation equations without relaxations

∂µT
µ
ν = FνλJ

λ ∂µJ
µ = 0 (4.44)

To compute the ideal-fluid constitutive relations, we need to vary the
generating functional (4.39) with respect to the sources as in (4.40). We
employ the following variations for the hydrodynamic and geometric fields
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in terms of the sources

δT = −Tuµδτµ (4.45a)
δuµ = −uµuνδτν (4.45b)
δEµ = Eµν

ρδτρ − τµEνh
ν(ρνσ)δhρσ − (∂µδAν − ∂νδAµ) νν (4.45c)

δhµν = −hµρδhρσh
σν + 2ν(µhν)ρδτρ (4.45d)

δνµ = νµννδτν − hµ(ννρ)δνρ (4.45e)
δµ = −µuµδτµ + uµδAµ (4.45f)

δe = e

(
−νµδτµ + 1

2h
µνδhµν

)
(4.45g)

Doing so, we obtain the following expressions for the constitutive relations
of an ideal fluid on a generic curved spacetime

Tµ = εuµ + (P − P · E)hµρuρ (4.46a)
Tµν = Phµν + ρmu

µuν − κEEµEν − 2βPE(µ)νν) (4.46b)

which, upon using (4.41), give the final result for the stress-energy tensor
and the current

Tµ
ν = −εuµτν − (P − P · E)hµρuρτν + Phµρhρν + ρmu

µuν

− κEEµEρhρν − βPEρνµhρν (4.47a)

Jµ = nuµ + 1
e
∂ν

(
2eν[µPν]

)
(4.47b)

Observe that, because the electric field is order zero in derivatives, the current
is separated in two pieces: the first term proportional to the velocity is the
standard free current, related to the transport of free charges; the second
term is the bound current and, because it is antisymmetric in its indices,
it identically solves the conservation equation for the current. This means
that free and bound charges are separately conserved, and is because of the
hidden winding symmetry that implies the polarization current is conserved
identically off shell, in the QFT context. The polarization current is peculiar,
because it is of derivative order, even if we are considering only ideal fluids.
This feature appears every time we have an order zero electric or magnetic
field, see e.g. [245, 246] for an example in relativistic hydrodynamics.

In equation (4.47), we define the fluid pressure P , the energy density
ε, the momentum susceptibility (or kinetic mass density in [247]) ρm, the
density of free charges n, and s the entropy density. In equilibrium these are
defined in terms of the derivatives of the grand-canonical potential P as

n = ∂P

∂µ

∣∣∣∣ ρm = 2 ∂P
∂v⃗2

∣∣∣∣ s = ∂P

∂T

∣∣∣∣ (4.48a)

βP = ∂P

∂(E⃗ · v⃗)

∣∣∣∣ κE = 2 ∂P
∂E⃗2

∣∣∣∣ (4.48b)
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where the vertical bar means the derivatives are computed keeping all the
other thermodynamic variables fixed. The free energy is defined so that the
following thermodynamic equation is obeyed

ε+ P = sT + µn+ ρmv⃗
2 + κEE⃗2 + 2βPE⃗ · v⃗ (4.49)

The two thermodynamic quantities κE and βP were discussed for the
first time in [2], and we can understand their physical meaning from (4.48).
The function κE is interpreted as the non-linear electric susceptibility, and
is different from the standard thermodynamic susceptibilities, which are
second derivatives of the grand canonical potential χ = ∂2P

∂λ2 , see (2.41).
On the other hand, the role of βP can be understood by remembering that
J⃗ · E⃗ ∼ v⃗ · E⃗ is the work done on the system by the electric field. Then, the
inverse derivative ∂(v⃗·E⃗)

∂P is a quantifier of how the work done on the system
per unit charge changes as we change the pressure. Thus, we can interpret
βP as compressibility caused by polarization.

We can express, in thermodynamic equilibrium, the momentum density
P⃗ and polarization P⃗ as

P⃗ = ∂P

∂E⃗

∣∣∣∣ = κEE⃗ + βPv⃗ (4.50a)

P⃗ = ∂P

∂v⃗

∣∣∣∣ = ρmv⃗ + βPE⃗ (4.50b)

from which we see that the system can have a non-zero momentum at zero
velocity, and similarly a non-zero polarization at vanishing external electric
field. This happens because our system is not time-reversal invariant: had we
kept (E⃗ · v⃗)2 in the pressure, thus making it T -even, we would have found that
the polarization always vanishes at zero electric field. This is again similar
to what happens in [245], in which the scalar E ·B breaks the time-reversal
symmetry and for this reason the system can have a non-zero polarization at
zero electric field, because the magnetic field induces a polarization too.

We can rewrite the Euler relation as

ε+ P = sT + E⃗ · P⃗ + v⃗ · P⃗ + nµ (4.51)

And from here, obtain the Gibbs-Duhem equation in the form

dP = s dT + n dµ+ Pi dvi + Pi dEi (4.52)

We remark that the constitutive relations (4.47) are peculiar, in the sense
that usually the velocity is an eigenvector of the stress-energy tensor for
ideal fluids, and the total energy density its eigenvalue. Indeed, one of the
matching conditions of the Landau frame (2.14) is to extend this ideal fluid
relation to all orders in derivative expansion. In the present case however
one finds

Tµ
νu

ν = −
(
ε− ρmu

2 − E · P
)
uµ + (P · E − βPE · u) νµ −κE(E ·u)Eµ (4.53)
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in which the velocity is an eigenvector with the energy density as eigenvalue
only at zero electric field. Thus, for an order-zero in derivatives electric field,
the Landau frame does not exist, since it is violated already at the level of
the ideal fluid.

In the flat spacetime, Cartesian-coordinates limit the constitutive relations
(4.47) reduce to

T 0
0 = −ε (4.54a)

T 0
i = ρmvi + βPEi = Pi (4.54b)

T i
0 = −

(
ε+ P − P⃗ · E⃗

)
vi (4.54c)

T i
j = Pδi

j + ρmv
ivj − κEEiEj (4.54d)

J0 = n− ∂jPj (4.54e)
J i = nvi + ∂tPi (4.54f)

in which we see explicitly that the energy flux T i
0 is different from the

momentum density T 0
i.

These constitutive relations, and their respective curved spacetime form
(4.47), identically solve the equations of hydrodynamics after imposing the
hydrostatic constraints (4.38). This means that any fluid flow that is sta-
tionary will be a solution to the equations of hydrodynamic without further
constraints.

4.3 Adding relaxations

As we showed explicitly in (4.26), for a fluid to be stationary in the presence of
a background external electric field, the chemical potential must be arranged
in such a way that its gradient counter-balances the electric field. This,
however, means that the velocity, provided that it obeys the hydrostatic
constraints (4.38), is completely free and unrelated to the applied electric
field, hence we do not find any stationary state driven by the electric field.
To reach such steady states we need to include relaxations in the equations of
hydrodynamics, which we will do in this Section, and modify the hydrostatic
constraints accordingly.

4.3.1 Order zero

Following the EFT prescription, we add the most general relaxation terms
consistent with the ideal fluid data, such as energy and charge density,
momentum, etc. . . At order zero in derivatives all the terms we can construct
do not produce entropy, since they do not vanish on hydrostatic configurations
(it is only terms which do vanish on the hydrostatic constraints that are
associated with entropy production). It is only at order one in derivatives
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that we can consider dissipative corrections, which could then also appear in
the relaxation terms, see the recent work [157]. This means that at order
zero in derivatives we can have relaxation terms which do not vanish in the
hydrostatic regime, while at order one we can have relaxations proportional
to the hydrostatic constraints, e.g. ∂µT , and that are zero when the fluid is in
a stationary state. The former kind can, in principle, lead to a modification
of the hydrostatic constraints, as we will see.

We now focus on the constitutive relations (4.54) and (non-)conservation
equations in the flat spacetime limit and modify them accordingly to include
the effect of the sinks

0 = ∂tε+ ∂iJ
i
ε − EiJ

i + Γ̂ε (4.55a)
0 = ∂tPi + ∂jT

j
i − nJi + Γ̂P,i (4.55b)

0 = ∂tJ
0 + ∂iJ

i (4.55c)

Here we defined the energy current J i
ε = T i

0. Notice that we are not
considering charge relaxation effects.

As a comment, we remind that our fluid is boost-agnostic only because
of the presence of relaxation rates, as discussed in the introduction of this
chapter. Therefore, the system could initially be Galilean or Lorentzian, but
stop fulfilling the relevant Ward identities after relaxation rates are introduced.
Because of this, it is reasonable to expect that the thermodynamic parameters
specific to boost-agnostic fluid should be small, of the scale of the relaxation
rates Γ.

The most general choice compatible with the EFT prescription is to
expand the momentum relaxation Γ̂i

P in terms of the order zero vector of
the theory, while Γ̂ε can be a generic function of the scalars

Γ̂i
P = ΓPPi + ΓPP

i + O(∂) Γ̂ε = Γε + O(∂) (4.56)

In principle, we also have another vector at order zero, namely ∂iµ, but as we
discussed earlier it can always be exchanged for the electric field on stationary
states, and this fact survives even in the presence of relaxations. We included
decay terms up to order zero in derivatives, since we are considering ideal
fluids. This means that the relaxation terms appear at order zero in the
equations of motion, while the other terms, coming from the gradients of the
fluid four-currents, can be order zero or one in derivatives.

If we naively apply the constitutive relations to our new modified equa-
tions of motion (4.55), while imposing the hydrostatic constraints (4.38),
we clearly find that the relaxation terms must vanish for the equations of
motion to be satisfied identically, as expected3. However, we can consider a

3This is because the equations of motions for ideal fluids can be written as linear
combinations of Lie derivatives [248], so that they are identically satisfied when we impose
the Killing conditions (4.16).
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second possibility, by looking at the equations of motion order by order in
derivatives: at order one there are no relaxation rates in the equations of
motion (remember, the sinks are order zero terms), hence the terms coming
from the currents must cancel with themselves in the hydrostatic limit. This
is indeed what happens, provided that we use all the hydrostatic constraints
in (4.38) except for the last one, which is not needed.

Next, we can look at the equations of motion at order zero in derivatives,
the order at which our relaxation rates appear. We use all the hydrostatic
constraints already employed to solve the order-one equations identically, in
particular the vanishing of the Lie derivatives of scalar quantities along the
fluid flow. Thus, at the end of the computation what remains is

nvi (Ei − ∂iµ) = Γε + O(∂) (4.57a)
n (Ei − ∂iµ) = ΓPPi + ΓPPi + O(∂) (4.57b)

respectively for the energy and momentum equations of motion. As we
remarked above, it is immediately clear that if we also impose the last
hydrostatic requirement Ei − ∂iµ = 0, then the relaxation rates must all
cancel with each other. However, this is an unphysical solution: we would
find that

ΓPPi + ΓPPi = 0 (4.58a)
Γε = 0 (4.58b)

indeed leads to a relation that implicitly links the fluid velocity to the external
electric field

vi = −
(
κEΓP + βPΓP

βPΓP + ρmΓP

)
Ei (4.59)

So the fluid would be dragged along by the electric field, but would somehow
produce no heat in the process, as the energy sink is set to zero Γε = 0.

For this reason we focus on a second possibility, specifically that the
last hydrostatic constraint Ei − ∂iµ = 0 must be modified to accommodate
the presence of relaxation rates. First, we observe that the energy and
momentum relaxation rates are not independent in (4.57): by projecting the
momentum equation along the velocity we find that the LHS is the same for
the two equations and so

Γε = vi (ΓPPi + ΓPPi)
= (ρmΓP + βPΓP) v⃗2 + (βPΓP + κEΓP) v⃗ · E⃗ (4.60)

This relation between energy and momentum relaxation is a kinematic con-
straint that must be obeyed for the system to reach hydrostatic equilibrium,
and can be interpreted as a requirement of stationarity for the sinks. We will
see later that this condition can also be obtained by the requirement that
the ideal fluid does not generate entropy, and thus holds more generally than
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just hydrostatic flows. Notice that a similar relation holds for the simple
Drude model, if we require the energy of the system not to blow up.

Assuming the validity of the above condition, we modify the hydro-
static constraints involving the electric field to also include the momentum
relaxation

Ei − ∂iµ = 0 =⇒ n (Ei − ∂iµ) = ΓPPi + ΓPPi (4.61)

We can arrange (4.61) in the same form of (4.1), explicitly

v⃗ =
(
n− κEΓP − βPΓP

βPΓP + ρmΓP

)
E⃗ − n

βPΓP + ρmΓP
∂⃗µ+ O(∂) (4.62)

leading to the identifications

ΩE =
(
n− κEΓP − βPΓP

βPΓP + ρmΓP

)
(4.63a)

Ωµ = n

βPΓP + ρmΓP
(4.63b)

Notice in particular that Ωµ ̸= 0 only if n ̸= 0.
In the presence of external sources the system never reaches global ther-

modynamic equilibrium, but rather relax to hydrostatic solutions. Remember
that, in the context of General Relativity [165], static means that the system
is time-independent and symmetric under time reversal. On the other hand,
stationary refers only to the first property, and does not require the system
to look the same under T -symmetry. From this perspective our solution is
perfectly stationary (there exists a timelike Killing vector field), although
not static.

The condition (4.60) can be understood in the same way to what happens
to any external source in hydrostatic equilibrium: the sources cannot vary
arbitrarily, but are constrained by the Killing condition, if a stationary state
is to be reached at all. Once the external sources are time independent,
meaning Lβ(. . . ) = 0, then the fluid can finally relax to a hydrostatic flow and
the fluid variables too will slowly start obeying the hydrostatic constraints.

We can also understand better (4.61) by following the hydrodynamic
approach of Chapter 2. Without any external source, the hydrodynamic
EFT prescription leads us to the constitutive relations (2.26) in the Landau
frame. There, the chemical potential sits alone in the current constitutive
relations and stationary states are reached when ∂νµ = 0. We can now ask
what happens when we also include an electric field in the theory, and the
answer are the constitutive relations in (2.61): the external source field Eµ

now sits together with the gradient of the chemical potential in the current
one-point function, thus a steady state is reached only if the dissipative term
vanishes Eµ − T∂µ

µ
T = 0, leading us to the hydrostatic constraint. It should

not come as a surprise then that if we add other sources (or sinks in this
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case) that couple to the fluid degrees of freedom the hydrostatic conditions
should be modified.

There are however a couple of differences with respect to adding a
U(1) gauge field: first, the external gauge field does not depend on the
thermodynamics variables, while the relaxation rates Γ might do. Secondly,
the U(1) gauge field is a conservative field, which can be included in the
theory via exact arguments based on an action principle, while the relaxation
rates are non-conservative effects that break diffeomorphism invariance. This
means that to include them in the theory we must either add them by hand
and then study them via heuristic means, like in this chapter, or consider
a specific realization and subsequently freeze the dynamic of the field that
break diffeomorphism to obtain an effective relaxation, as was done in the
last chapter around (3.26).

4.3.2 Order one

In standard hydrodynamics, as in Chapter 2, if the constitutive relations
are at order O(∂n) in derivative expansion, then the equations of motion
are up to order O(∂n+1) in derivatives, and the formal derivative series of
hydrodynamic means that each order should be solved independently. This
is what happens for example when applying the hydrostatic conditions to
stationary flows, in which each order in derivative expansion identically obeys
the conservation equations.

However, in the presence of order zero external fields this is not true, and
we have mixing of derivatives. Constitutive relations at order O(∂n) contains
terms up to order O(∂n+1) in derivatives, due to polarization effects, while
the equations of motion contain terms from O(1) to O(∂n+1).

When we consider first-order corrections to the ideal fluid, we must also
take into account first-order terms into the relaxation rates, in particular
both Pi and Pi receive derivative contributions at higher orders. These
corrections to the relaxation terms will appear at order one in the equations
of motion; hence, provided they obey certain integrability constraints, they
can be in principle cancelled by appropriate redefinitions of the order-zero
stress-energy tensor. For this reason, (some of) the order-one relaxations are
unphysical, since they can be redefined away. If they cannot be reabsorbed
in the constitutive relations, then they might lead to further modifications
of the hydrostatic conditions (4.61) or the other constraints (4.38).

We can start the analysis following the same steps used to study the ideal
fluid: we first focus on the constitutive relations in the absence of relaxation
rates at order one in derivatives, then we add the relaxation rate, and check
for consistency. At order one in derivatives there are 14 scalars that we
can use to construct the hydrostatic generating functional in terms of the
geometric sources (τµ, hµν , Aµ). One possible choice for these scalars is given
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by

s(1) =
{
νµ∂µ

(
T, u2,E2, u · E

)
,Eνh

νµ∂µ

(
T, u2,E2, u · E

)
,

uµuν∇µEν , ν
µuν∇µEν ,Eµuν∇µEν ,∇µEµ,

∂µτνν
[µhν]σEσ, ∂µ (hνσu

σ) ν[µhν]ρEρ

}
(4.64)

which lead to the following form for the first order corrections to the gener-
ating functional (2.31)

W1[τ, h,A] =
�

dd+1x e
14∑

i=1
Fi

(
T, µ,E2, u2,E · u

)
si

(1) (4.65)

that should be added to W(0), used to compute the ideal fluid constitutive
relations (4.39). Notice that we did not include νµ∂µµ and Eν∂νµ in the list
of scalars, since these can always be traded for terms related to the electric
field [245].

We vary this functional with respect to the sources according to (4.40) to
obtain the first order corrections to the stress-energy tensor and the current.
At the end we take the flat spacetime limit, which is the regime we are
interested in when we add the relaxations. In flat spacetime the 14 scalars
reduce significantly

s1 = s2 = s5 = s13 = s14 = 0 (4.66a)
s3 = 2s8 = 2s11 = vi∂iE⃗2 ≡ s̄1 (4.66b)

s4 = s10 = vi∂i

(
E⃗ · v⃗

)
≡ s̄2 (4.66c)

s6 = 2s9 = Ei∂iv⃗
2 ≡ s̄3 (4.66d)

s7 = Ei∂iE⃗2 ≡ s̄4 (4.66e)
s12 = ∂iEi ≡ s̄5 (4.66f)

with only 5 independent order-one scalars left. For the non-composite vectors
at order one in derivatives we take the following basis

v̄1 = ∂iv⃗
2 (4.67a)

v̄2 = ∂iE⃗2 (4.67b)

v̄3 = ∂i

(
v⃗ · E⃗

)
(4.67c)

v̄4 = vj∂iEj (4.67d)

The final result for the order-one constitutive relations are long and not very
illuminating, so we refer to the original paper for further details [2].

We comment here on a problem related to derivatives of the chemical
potential. Given the order-one generating functional (4.65) we expect to find
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in the constitutive relations terms which are order zero in derivatives, e.g.
∂Fi
∂µ ∂jµ, since the derivative of the chemical potential is order zero ∂µ ∼ O(1),
as already discussed near (4.29). This means that the constitutive relations
at order zero are influenced by the generating functional at order one, and
more generally the constitutive relations at order n will contain terms coming
from the generating functional at order n+ 1, rendering the formal gradient
expansion of hydrodynamics problematic.

This issue already arises in the relativistic case [245], where we remind
that the gradient of µ must be order zero to balance the order-zero electric
field. To solve this problem, in [245] it was assumed that ∂F

∂µ ∼ O(∂), so
that these terms do not affect the ideal fluid constitutive relations. However,
in the presence of relaxations there is another possibility we can explore,
namely we can consider the more natural approach to take ∂µ ∼ O(∂). This
can be done thanks to our modified hydrostatic constrain

n (Ei − ∂iµ) − ΓPPi − ΓPPi = 0 (4.68)

Without relaxations the gradient of the chemical potential must be of the
same derivative order of the electric field, but with relaxations we can take
∂µ order one in derivatives and balance the electric field against the sinks.

In [2] we considered the most general expansion for the order-one mo-
mentum relaxation as

Γ̂i
P =

ΓP +
5∑

j=1
ΓP,j s̄j

P i +

ΓP +
5∑

j=1
ΓP,j s̄j

Pi +
4∑

j=1
Γj(v̄j)i + O(∂2)

(4.69)
where we remind that both Pi and P i receives derivative corrections. We
then assumed that even at order one, all the hydrostatic conditions were
preserved. Thus, we still need to modify only the constraint (4.61), and took
the above expression to appear on the RHS of the hydrostatic constraint
(4.61). Had we chosen vi and Ei instead of P i and Pi as our basis vectors to
write the relaxations, we would not have found order-one corrections to the
relaxations. This might be related to frame transformations, however it is
not clear at the present stage.

Finally, we remark that there are other possibilities for how to deal
with the order-one corrections to the relaxations rates: a full study of the
first-order corrections is still in progress, and we refer to the original paper
for some further preliminary results and discussions [2].

4.3.3 Entropy current

Because our constitutive relations and equations of motion do not simply
follow from the hydrostatic generating functional, since we added the re-
laxations by hand, positivity of entropy production of the ideal fluid is not
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automatically true and must be checked. We proceed in the standard way to
compute the canonical entropy current from the hydrodynamic equations:
we contract the momentum conservation equation with vi and subtract it to
the energy conservation equation(

∂t + vi∂i

) (
ε− E⃗ · P⃗

)
+
(
ε+ P − P⃗ · E⃗ − v⃗ · P⃗

)
∂iv

i+

− vi
(
∂t + vj∂j

)
Pi + viPj∂jEi + Pj∂tEj = Γ̂ε − viΓ̂i

P + O(∂2)

From the thermodynamic relation (4.52), it follows that(
∂t + vi∂i

) (
ε− P⃗ · E⃗

)
= T

(
∂t + vi∂i

)
s+

+ µ
(
∂t + vi∂i

)
n− Pj

(
∂t + vi∂i

)
Ej + vj

(
∂t + vi∂i

)
P j (4.70)

and together with the charge conservation equation, we arrive at the following
expression for the divergence of the entropy current(

∂t + vi∂i

)
s+ s∂iv

i = Γ̂ε − viΓ̂i
P + O(∂2) (4.71)

Without relaxations the RHS is identically zero, as discussed in Chapter 2
for relativistic ideal fluids. Because the relaxations we are considering are
hydrostatic, i.e. they can be non-zero on stationary states, we require that
the ideal fluid does not produce entropy even when decay rates are present.
This leads to the constraint (4.60) between energy and momentum sinks
that we found requiring the conservation equations to be compatible with
relaxations on stationary flows.

It is possible to have ideal fluids that produce entropy in the presence
of relaxations, as in [252] or [157], however the relaxation considered there
are of a different kind, namely they must always disappear in hydrostatic
solutions. Notice, however, that for an open system entropy must not always
grow: if the sinks parametrize the effect of some weak coupling with a bath
it might be possible to give up on the positivity of entropy production.

Finally, if we insist that the ideal fluid must not produce entropy, we can
give an intuitive remark on the relation we found between the sinks (4.60).
Consider the Euler equation in the form

s = 1
T

(
ε− nµ− v⃗ · P⃗ + P − E⃗ · P⃗

)
(4.72)

then, if the momentum P⃗ decreases due to the relaxation term, we can keep
the entropy constant by also reducing the energy via Γ̂ε.

4.3.4 Linearised stability and DC conductivities

To properly analyse the most important aspects of our theory we want to
make use of the modified form of the hydrostatic constraint (4.61). For
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this reason, we consider a (2+1)-dimensional fluid in a background with
constant temperature, chemical potential4 and electric field in the x-direction
E⃗ = (Ex, 0). Because we want to study the modes around a stationary state,
we employ our hydrostatic condition and find that, for this background, the
velocity is

vx =
(
n− κEΓP − βPΓP

βPΓP + ρmΓP

)
Ex (4.73)

Subsequently, we linearize around this background, assuming for simplic-
ity that the sinks are independent on the thermodynamic variables, and we
compute the modes at zero wavevector. We find four modes: two of them
are gapless and vanish at zero wavevector ω1,2 = 0. A third mode instead is
gapped and decaying as

ω3 = −iΓeff with Γeff = 1
ρm

(βPΓP + ρmΓP ) (4.74)

The last mode, even at zero wavevector, is very complicated and depends on
many thermodynamic susceptibilities, hence a complete study of its stability
depends also on the specific details of the equations of state. However, for
small electric field we can expand the mode finding

ω = −iΓeff + O(E2
x) (4.75)

Hence, the system is stable with respect to the background we considered
if Γeff ≥ 0. In particular, this means that the single relaxation rates can be
negative, provided that Γeff is positive.

Finally, observe that the system we have described has a finite DC electric
and thermoelectric conductivity in the hydrostatic limit. Specifically we can
evaluate the electric and heat currents for the ideal fluid as

J⃗ = n2τ

ρm
E⃗ + O(∂) (4.76a)

Q⃗ = sTnτ

ρm
E⃗ + O(∂) (4.76b)

where we defined an effective relaxation time τ

τ = Γ−1
p

1 − κEΓP
n − βPΓP

n

1 + βPΓP
ρmΓP

 (4.77)

to make contact with the standard Drude formula. Then, remembering that
the thermodynamic parameters can all depend on the external electric field,
we can define the non-linear DC conductivities as

σDC = J⃗

E⃗
= n2τ

ρm
αDC = Q⃗

E⃗
= sTnτ

ρm
(4.78)

4This is possible because with our prescription (4.61) we can balance the electric field
with the Γvx while still keeping ∂xµ = 0.
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which correspond to linear response conductivities for small electric fields.
To conclude, we can thoroughly consider the analogy between our ap-

proach and the Drude model. Consider a system composed of charged,
weakly-interacting particles, like electrons in ordinary metals. If we ignore in-
teractions between the carriers and only focus on scatterings with impurities,
Newton’s second law reads

m
d
dt⟨v⃗⟩ = qE⃗ − m

τ
⟨v⃗⟩ (4.79)

where ⟨v⃗⟩ is the average velocity, while m and q are respectively the mass
and charge of the particle. The last term represents the interactions with
impurities as an effective drag force in terms of a single phenomenological
parameter τ . The system is in a steady state only when τ−1 ̸= 0, then
requiring that the velocity is not time-dependent we obtain ⟨v⃗⟩ = qτ/mE⃗,
which is the drift velocity of the electron gas and is a fundamental property
of the system: it does not depend on initial conditions or the geometry of
the sample, exactly like in our hydrodynamic formalism. Furthermore, we
can write the electric current as J⃗ = nq⟨v⃗⟩ for some uniform charge density
n, which gives us the DC conductivity

J⃗ = nq2τ

m
E⃗ ⇒ σDC = nq2τ

m
(4.80)

An applied external electric field generally heats up the system, as it
happens also in hydrodynamics. This means that if the system reaches
a steady state the heat produced must be dissipated away, otherwise the
system melts. We can see this effect also in the Drude model: from (4.79)
we arrive to an equation for the kinetic energy of the gas particles

m

2
d
dt⟨v⃗⟩2 = q⟨v⃗⟩E⃗ − m

τ
⟨v⃗⟩2 (4.81)

which implies that if the velocity is time-independent (steady state), then
the energy provided by the electric field is lost to impurities with a rate
proportional to ⟨v⃗⟩2. The last term is effectively an energy relaxation rate
Γε like the one we introduced in our hydrodynamic formalism.

4.4 Dissipative corrections and optical conductiv-
ity

This final section is based on work still in progress, and is not published
research yet.

The obvious next step forward is to start discussing dissipative corrections.
However, this becomes quickly very complicated with the setup discussed in
this chapter, because having two different vectors at order zero in derivatives,
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vi and Ei, means that we can construct many tensor structures ∼ O(102)
that can appear in the constitutive relations at order one, each with its own
associated transport coefficient5.

To make our life simpler, we can then demote the electric field to order
one in derivative counting, hence dropping all the terms that depend on
the electric field in the thermodynamics (4.48) and ideal fluid (4.54). Fur-
thermore, we also demote to order one the relaxation rate ΓP and Γε, while
ΓP disappears, since we do not have an order-zero polarization any more.
We remark that this does not modify the result of (4.61), since hydrostatic
constraints are exact results which do not depend on the choice of derivative
counting for the external fields.

With these simplifications, the most interesting term we may wish to
study are the dissipative corrections to the U(1) current. This is because
usually it receives derivative corrections in the form Ji ⊃ σ (Ei − ∂iµ), but
now that we modified the hydrostatic constraint (4.61) we expect to find

Ji ⊃ σ

(
Ei − ∂iµ− ΓPi

n

)
(4.82)

where we dropped the subindex P from the relaxation rate, since there is
now only one decay rate. In particular, we are interested in studying how
this correction to the constitutive relations affects the usual linear-response
charge transport.

To understand the physics, consider a relativistic constitutive relation
expanded at small velocity. If we add dissipative correction to the current
Jµ = Jµ

(0) + Jµ
(1) we find that second law of thermodynamics becomes

∂ts+ ∂i

(
svi − µ

T
J i

(1)

)
+ J i

(1)∂i
µ

T
= −Γεε

T
+ Γ(P · v)

T
+
E · J(1)
T

≥ 0 (4.83)

The first two terms in the LHS are the divergence of the entropy current,
thus we rewrite it as

∂µS
µ = −Γε

T
+ ΓP · v

T
+
J i

(1)
T

(
Ei − T∂i

µ

T

)
≥ 0 (4.84)

If we now impose the relations we found for ideal fluids (4.60) to cancel the
two relaxation terms, we are left with a quantity on the RHS that does not
vanish in equilibrium if we use our modified condition (4.61).

To address the problem, the relation between energy and momentum
relaxation must receive dissipative derivative corrections. Namely, we identify

Γε = ΓP · v + Γ
P · J(1)
n

= Γ
Pi

(
nvi + J i

(1)

)
n

= ΓP · J
n

(4.85)

5Even without order-zero electric fields, boost-agnostic hydrodynamics has 30 transport
coefficients at order one in derivatives [101].
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where in the last step we introduced the total free current, meaning that if
polarization was present, it would not appear there. Obviously, on hydrostatic
solutions the new term proportional to J(1) vanishes and we find again (4.60).

Indeed, with this identification, we see that the divergence of the entropy
current takes the desired form

∂µS
µ =

J i
(1)
T

(
Ei − T∂i

µ

T
− ΓPi

n

)
≥ 0 (4.86)

and the RHS is positive definite only if the dissipative part of the current is
of the form (4.82)

J i
(1) = σ

(
Ei − T∂i

µ

T
− ΓPi

n

)
(4.87)

From this result, we can now compute the optical conductivities on a
background with zero velocity and zero electric field using the standard
Martin-Kadanoff method 2.2.1. We find that

σ(ω) = n2 − iχππσω

Γχππ − iχππω
(4.88)

with χππ the momentum-momentum susceptibility. Notice, in particular,
that in DC at ω = 0 the incoherent conductivity σ drops out and we find

σDC = n2

Γχππ
(4.89)

in agreement with (4.78).
There are ways to reintroduce the transport coefficient σ in the DC

conductivity, by considering non-hydrostatic momentum relaxations Γ =
Γ(0) + Γ(1) and modifying the relation between Γε and Γ appropriately. This
gives rise to interesting results that renormalize the incoherent conductivity σ
similarly to what is found in [157], however we will not discuss them further.

4.5 Summary, discussion and outlook

In this chapter we characterized the stationary flows of a charged fluid
immersed in an electric field, which is also subject to the effect of relaxations
that remove energy and momentum from the system, thus behaving as sinks
connected with external baths.

Since momentum relaxation breaks boost, we employed a boost-agnostic
formalism and computed the constitutive relations up to order one in deriva-
tives using the hydrostatic generating functional. Subsequently, we added
by hand the relaxation terms and studied the minimal corrections to the
hydrostatic conditions (4.38) consistent with the equations of motion. We
found that only one single order-zero constraint had to be modified, taking
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the new form (4.61), and we also obtained a kinematic relation between
energy and momentum relaxation (4.60).

As for future perspectives, it would be fascinating to see if it is possible
to implement relaxation rates as in our setup from a more formal and
geometrical approach, so to include the effect of relaxations in a (suitably
generalized) generating functional. This could be done using the modified
diffeomorphisms of [257], following the approach of [157], from the Schwinger-
Keldysh effective actions as in [49], or, finally, following the thermodynamic
approach of [100] to include a fixed vector in the theory.

In the line of Section 4.4, it would also be interesting to systematically
study dissipative corrections to discuss how the modified hydrostatic relation
(4.61) changes the AC thermoelectric transport.

Finally, we could discuss a similar setup in holographic models [258],
following e.g. the result of [158], which finds a contribution due to the
velocity in the spatial current as in (4.82).
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Chapter 5
Onsager relations in relaxed
hydrodynamics

“Nature does nothing uselessly.”

Aristotle, Politics

5.1 Introduction

A common feature of all hydrodynamic theories is that a charged fluid in an
external electric field gives rise to optical conductivities which are divergent
in the DC limit ω → 0 [14]. The physical reason for this divergence is very
simple: in hydrodynamics momentum is a conserved quantity, therefore an
external electric field accelerates the fluid increasing momentum without
bound, since there are no mechanism to dissipate it. On a more technical
level, this can be traced back to the exact translation symmetry of the theory,
or more directly to the existence of a conserved momentum operator that
couples to the charged degrees of freedom.

Exactly like in Chapter 4, the standard approach to avoid this issue is to
include a small effective phenomenological relaxation parameter τ−1

m which
breaks translation invariance and relaxes the total momentum of the fluid,
so that a steady state with finite DC conductivities can be reached. One
assumption behind this approach is that, although momentum is no longer
conserved, it can still be a relevant hydrodynamic charge if the parameter τm

is large enough [50, 157, 158, 162, 164, 192, 244, 259], i.e. if the associated
gapped mode is closer to the real line in frequency space compared to the
other non-hydrodynamic modes (see the discussion about the hydrodynamic
modes in Section 2.2.5 and in the Introduction 1).

As we will see better in the next chapter, there are circumstances in

103



Chapter 5. Onsager relations in relaxed hydrodynamics

which momentum relaxation is not enough to obtain finite DC conductivities.
This is particularly relevant for the case of anomalous hydrodynamics, i.e.
chiral fluids in the presence of a U(1) axial anomaly. In this case, momentum
relaxation τm is not enough to obtain finite DC conductivities, and one also
needs to relax energy and axial charge [16, 257, 260–262]. Furthermore, from
a physical perspective, even without chiral anomalies, energy and charge
relaxations can be important ingredients of the low energy dynamics of
condensed matter systems, as argued in [126, 127, 263–265] from a kinetic
theory perspective.

On the other hand, from a computational perspective there are two main
approaches to obtain the retarded response functions (thus the conductivities)
from hydrodynamics, as reviewed in Section 2.2: the Martin-Kadanoff [175],
see Section 2.2.1 and the variational method [68, 74], Section 2.2.2. In
particular, the former is based on thermodynamics and linear response
theory, and works by perturbing the fluid with thermodynamic sources, while
the latter is rooted in field theory and uses metric and gauge field fluctuations
as sources.

However, because relaxation rates break the Lorentz and U(1) sym-
metry, the variational approach is usually difficult to implement in quasi-
hydrodynamics, since there is no unique proper way to covariantize the decay
terms. On the other hand, the canonical approach is more robust against
modifications of hydrodynamics, and is applicable also to quasihydrodynamic
models, however it is lacking under other aspects. Specifically it cannot be
used to compute all the Green functions in the theory [74, 88] and, if the
thermodynamics becomes more complicated (e.g., in the presence of order
zero electromagnetic fields), it might be hard to identify the susceptibilities
and the correct conjugate sources.

In this chapter we are going to explore models of linearized quasi-
hydrodynamics to compute Green functions using both the Martin-Kadanoff
and the variational method. In particular, we find that it is possible to
use the variational method in the presence of relaxations too. We start by
including extra source terms in the linearised equations of motion, and what
we find is that the coefficients of these extra terms are uniquely fixed by the
requirement of time-reversal covariance of the response functions alone, i.e.
Onsager reciprocal relations.

5.2 Martin-Kadanoff for quasihydrodynamics

We now focus specifically on a simple charged relativistic fluid with conserved
stress-energy tensor and a U(1) current. We linearize the theory and add
the most general relaxations terms to the equations of motion; subsequently
we impose Onsager relations on the Green functions, positivity of entropy
production, and linear stability from the study of the modes. What we find
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is a set of constraints and relations that must be obeyed very generally by
all fluids.

As we discussed in Section 2.2, we can write the equations of linearized
hydrodynamics in the form

∂tϕa(t,k) +Mab(k)ϕb(t,k) = 0 (5.1)

where we Fourier transformed in space, while keeping the explicit time
dependence. Here, ϕa are the fluctuations of the (almost-)conserved charges,
while Mab is the hydrodynamic matrix that depends on the constitutive
relations and equations of motion. We also rewrite here the definition of the
susceptibility matrix as

χab = ∂ϕa

∂λb
(5.2)

in which λa are the sources canonically conjugate to the charges.
Following the arguments of Section 2.2.1 we can use these expressions

to compute the Green functions using the Martin-Kadanoff method 2.55.
Furthermore, we have also discussed how time-reversal covariance of the
microscopic theory, namely the requirement that

GR
ab(ω,k) = ηaηbG

R
ab(ω,−k) (5.3)

imposes a constraint on the hydrodynamic matrix

χSMT (−k) = M(k)χS (5.4)

in which we set the magnetic field to zero and remind here that S =
diag(η1, η2, . . . ) is the matrix of the time-reversal eigenvalues ηa.

Consider now a relativistic fluid in the Landau frame in (3+1)-dimensional
flat spacetime and without external electromagnetic fields, so that the order
one constitutive relations are given in (2.26), and the non-linear conservation
equations are simply ∂µT

µν = ∂µJ
µ = 0. We now linearize these equations

around a global equilibrium state with constant energy and charge density,
and zero spatial velocity

uµ = (1, δvi) ε = ε0 + δε n = n0 + δn (5.5)

The linearised equations of motion take the following form

∂tδε+ (ε0 + P0) ∂iδv
i = −

(
δε

τεε
+ δn

τεn

)
(5.6a)

∂tδn+ n0∂iδv
i − σT0∂

2
i δ
µ

T
= −

(
δε

τnε
+ δn

τnn

)
(5.6b)

∂tδπ
i + ∂iδP − η

(
∂2

j δv
i + 1

3∂
i∂jδv

j
)

− ζ∂i∂jδv
j = − 1

τm
δπi (5.6c)
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where the linear momentum is δπi = (ε0 + P0)δvi for a relativistic fluid.
These correspond to the (non-)conservation of energy, charge and momentum
respectively. In the above equations we also included on the RHS the most
general relaxation terms at order one in fluctuations and order zero in
derivatives1 compatible with isotropy and rotational invariance (hence only
a single τm appears, instead of a momentum-relaxation matrix). Specifically,
τm is the standard momentum relaxation, while τεε and τnn are commonly
known as energy and charge relaxation respectively. The other two off-
diagonal relaxations τεn and τnε, however, are mostly new (see [16]) and
represent mixed relaxations which do not have units of time: τεn parametrizes
the energy loss due to charge fluctuations and vice versa for τnε. Notice
that in principle, because of the relaxations, the constitutive relations might
have more and different transport coefficients [49], however because we are
assuming the τs are very large these corrections are taken to be very small.

In the context of hydrodynamics, relaxation usually means that the
fluctuation of some conserved charge decays exponentially to equilibrium, e.g.
consider the simple charge conservation equation on a uniform background

∂tδn = − 1
τnn

δn (5.7)

Real time solutions to this equation take the form

δn(t) = δn(0)e−t/τnn (5.8)

However, even a simple example like this one, cannot be properly covari-
antized, for example writing uµJ

µ/τ would not give the proper relaxation
term at non-zero velocity. Indeed, J0 represent the charge density in the
laboratory frame, while n = −uµJ

µ is the charge density in the fluid rest
frame, thus ∂tJ

0 = 1
τ uµJ

µ would not relax the right charge. Furthermore, if
we try to covariantize in this way, we will never be able to write a momentum
relaxation term, since the comoving momentum is zero by definition.

We then realize that to write any relaxation in a covariant non-linear
form we need some extra information beyond the fluid data alone. This can
be done e.g. in the boost-agnostic formalism by using the laboratory-frame
clock form τµ = (1,0), in the relativistic case following [266] by considering
a second four-velocity vector Uµ which pins the fluid velocity, or introducing
extra fields as in [100, 156, 157].

The second important thing to observe is that relaxations act as con-
straints on the system, by selecting a specific background. This is seen very
clearly for the momentum relaxation, in which 1/τmδπ

i naturally selects the
equilibrium solution with zero velocity as the only equilibrium solution of
the system. This should be contrasted with the case without momentum

1The reason for this is that we take the relaxation rates τs to be large, namely τ−1 ∼ O(∂)
in the linearized regime.
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relaxation, in which any equilibrium with constant non-zero velocity is a
valid equilibrium, thanks to the boost symmetry.

However, even without relaxations, although the theory has Lorentz
symmetry, the equilibrium solution does not [74, 167], and because we are
interested in computing two-point functions about some global thermody-
namic equilibrium any choice of the background will break the symmetry.
For these reasons we are agnostic on possible non-linear completions of the
theory, thus we focus only on the linearized version of hydrodynamics, which
is enough for the purpose of computing the Green functions. Then, we simply
write the relaxation terms as the most general expressions, following the
EFT prescription, of all the scalars and vectors in the linearized theory. At
the end, we expect that any covariant version of the non-linear relaxations
should lead to the same linearized expressions we work with, as we will see
in the next chapter with specific examples.

Having clarified the reasoning behind our choice of relaxations, we proceed
by imposing Onsager relations in (5.4) on our linearized hydrodynamic theory
(5.6). We take ϕ(t,k) =

(
δε, δn, δπi

)
and, setting k = (kx, 0, 0) without loss

of generality, the matrix Mab becomes

M =

1
τεε

1
τεn

ikx 0 0
k2

xσβε + 1
τnε

k2
xσβn + 1

τnn

ikxn0
P0+ε0

0 0
ikx

∂P
∂ε ikx

∂P
∂n

k2
x(3ζ+4η)
3(P0+ε0) + 1

τp
0 0

0 0 0 k2
xη

P0+ε0
+ 1

τm
0

0 0 0 0 k2
xη

P0+ε0
+ 1

τm


(5.9)

where βε = ∂µ
∂ε − µ0

T0
∂T
∂ε and βn = ∂µ

∂n − µ0
T0

∂T
∂n . Then we find that Onsager

relations are obeyed iff the relaxation rates satisfy the condition
χεε

τnε
− χεn

τεε
+ χnε

τnn
− χnn

τεn
= 0 (5.10)

where the susceptibilities are

χnε = χεn = ∂ε

∂µ
= T0

∂n

∂T
+ µ0

∂n

∂µ
χnn = ∂n

∂µ
χεε = T0

∂ε

∂T
+ µ0

∂ε

∂µ
(5.11)

The above thermodynamic derivatives are in the grand canonical ensemble,
and should be understood at fixed µ or T respectively.

Notice that this result is not in contrast with the previous chapter, in
particular the τεε that appears here is not related to the Γε introduced in
(4.55). This is because, due to the relation (4.60)

Γε = ΓPP
ivi (5.12)
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between energy and momentum relaxations on hydrostatic solutions, Γε

vanishes when linearizing around a zero-velocity background.
The constraint (5.10) is very general and must be obeyed by any fluid

which preserves microscopic time-reversal invariance. In particular, we can
see that if the mixed relaxations are zero τ−1

nε = τ−1
εn = 0, then it implies

τεε = τnn, i.e. energy and charge must relax at the same rate as was already
observed in [257].

We can also study the effect of generalized relaxations on the second law
of thermodynamics. The entropy current, at the order we are interested in,
is just given by the canonical entropy current

Sµ = 1
T

(Puµ + Tµνuν − µJµ) (5.13)

We can linearize the entropy current and compute the divergence. Using the
linearized equations of motion (5.6) and following the usual steps, we arrive
at the result

T0∂µδS
µ = δε

(
µ0
τnε

− 1
τεε

)
+ δn

(
µ0
τnn

− 1
τεn

)
+ O(∂2, δ2) (5.14)

The RHS should be positive definite on any solution of the hydrodynamic
equations of motion. In this case, because the fluctuations of δε and δn are
not positive definite, we must impose that the coefficients multiplying the
fluctuations vanish, namely

1
τεε

= µ0
τnε

1
τεn

= µ0
τnn

(5.15)

These are two further constraints on the relaxation rates that stem from the
local form of the second law of thermodynamics, together with the constraint
(5.10) required by Onsager relations. For a system that is constrained by
both second law and Onsager relations there are then three constraints and
four total relaxation rates, which means that the whole relaxation dynamics
is actually characterized by a single parameter (in addition to momentum
decay τm). Furthermore, because of the structure of these constraints, not
all relaxation parameters must be positive.

There is an intuitive thermodynamic argument that we can give, following
[260], to explain why the mixed relaxations are related by the positivity of
entropy production in (5.15). Consider a fluid element which undergoes a
microscopic scattering process that relaxes the energy. Then, because of
the scattering, the fluid will lose some energy δε in a time τεε, on average.
However, if it loses energy, this implies that it is also losing charge by
δn = ∂n

∂ε δε = δε/µ0 in the same interval. The argument in reverse, for a
scattering that relaxes the charge, tells us that the system must also lose
energy as δε = µ0δn. We are thus let to the expressions (5.15) that come
from the second law.
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Indeed, both the above argument based on thermodynamics and the
second law hold only for closed systems. However, if the relaxation rates
parametrize the fact that our system is open and loses energy and charge to
the environment, then the second law might fail if applied to the fluid alone,
as we will see in the next chapter. The total entropy should still increase,
but we have to account for the entropy of the fluid plus of its environment
for this to happen.

In (5.14) we computed the entropy production at first order in fluctuations,
the order in which the relaxation rates first appear. However, linearized
hydrodynamics is usually discussed at order two in fluctuations, from the
point of view of the entropy current, since only at order O(δ2) we can bound
the dissipative transport coefficients. Therefore, we check the second law at
order two in fluctuations, and we find

T0∂µδs
µ = δεδT

T0τεε
+ δnδT

T0τεn
+ δµδn

τnn
+ δµδε

τnε
− µ0

δTδn

T0τnn
− µ0

δTδε

T0τnε

+ 1
τm

(ε0 + P0)δv2 + σ

(
µ0
T0
∂δT − ∂δµ

)2

+ η
(
δσij

)2
+ ζ

(
∂iδv

i
)2

+ O(δ3, ∂3) (5.16)

where δσij are the fluctuations of the shear tensor. Thus, we find that
positivity of entropy production at order two in fluctuations gives the usual
constraints on the transport coefficients σ ≥ 0, η ≥ 0 and ζ ≥ 0, furthermore,
as expected, we find τm ≥ 0 for the momentum relaxation rate.

Then, we can focus only on the first line in the above formula, the one
depending on the energy and charge relaxations. We rewrite it in terms of
fluctuations of temperature and chemical potential alone, by expanding the
energy and charge fluctuations as

δε = ∂ε

∂T
δT + ∂ε

∂µ
δµ δn = ∂n

∂T
δT + ∂n

∂µ
δµ (5.17)

and arrive at the following expression

T0∂µδs
µ = δµδT

(
∂ε

∂µ

1
T0τεε

+ ∂n

∂µ

1
T0τεn

+ ∂n

∂T

1
τnn

+ ∂ε

∂T

1
τnε

− µ0
T0

∂n

∂µ

1
τnn

−µ0
T0

∂ε

∂µ

1
τnε

)
+ δT 2

T0

(
∂ε

∂T

1
τεε

+ ∂n

∂T

1
τεn

− ∂n

∂T

µ0
τnn

− ∂ε

∂T

µ0
τnε

)
+ δµ2

(
∂n

∂µ

1
τnn

+ ∂ε

∂µ

1
τnε

)
+ . . . (5.18)

where the dots represent the positive definite terms we already discussed.
Employing both Onsager relations (5.10) and the constraints (5.15) we can
simplify the above expression to

T0∂µδS
µ = δµ2

(
∂n

∂µ

1
τnn

+ δε

δµ

1
τnε

)
+ . . . (5.19)

109



Chapter 5. Onsager relations in relaxed hydrodynamics

which can finally be rearranged in terms of susceptibilities as
δµ2

τnn

(
χεεχnn − χ2

εn

)
≶ 0 (5.20)

The sign of the inequality depends on the sign of ∂ε/∂T . The susceptibility
matrix is positive semi-definite, which means that its determinant is also
non-negative and so is the quantity in the bracket above. Thus, we see that
the sign of τnn is constrained by the sign of ∂ε/∂T : when ∂ε/∂T ≥ 0 then
τnn ≥ 0 and vice versa. It is important to observe that this condition is not
of equality-type, like (5.15) and (5.10), therefore, even including terms which
are order two in fluctuations in the second law, we still have a one-parameter
family of relaxations2.

Finally, we can also check if linear stability, namely the requirement that
hydrodynamic modes must decay and not grow with time, imposes further
constraints on the relaxation rates. In d+ 1 spacetime dimensions we find
d+ 2 modes, one for each equation of motion, which at k = 0 are given by

ω1 = − i

τm
ω2 = − i

2

( 1
τεε

+ 1
τnn

)
± i

2

√( 1
τεε

− 1
τnn

)2
+ 4
τnετεn

(5.21)

where ω1 has multiplicity d. Stability requires that the imaginary part
of the modes should be negative, thus the first mode simply tells us that
τm ≥ 0, exactly the same constraint that we find from the second law of
thermodynamics. The two other ω2 modes instead can be propagating or
not, and their stability depends on the thermodynamics and the relations
between the τs. However, if we also impose all the other constraints (5.15)
and (5.10), then we can rewrite ω2 as a null mode and a decaying mode

ω2 = 0 ω2 = −i
( 1
τnn

+ 1
τεε

)
= − i

τnn

(
∂ε
∂T − µ0

∂n
∂T

∂ε
∂T

)
(5.22)

In particular, the stability of the second mode depends again on the relative
sign of thermodynamic derivatives and τnn, as in (5.20).

Albeit it is not the main goal of this chapter, to conclude the section we
can ask about possible non-linear completion of our generalized relaxations
(we will see more in the next chapter). In particular, we can focus on
relaxations which obey both the second law of thermodynamics and Onsager
relations, and see how these constraints restrict the possible non-linear
expressions.

To proceed, we change the basis of fluctuations from the charges δn and
δε to the conjugate sources δT and δµ, specifically

δε

τεε
+ δn

τεn
= δT

τεT
+ δµ

τεµ

δε

τnε
+ δn

τnn
= δT

τnT
+ δµ

τnµ
(5.23)

2Notice that we could also include relaxation terms which are order two in fluctuations
directly in the equations of motion, to cancel O(δ2) terms that appear in the positivity of
entropy production.
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We can now impose Onsager relations and positivity of entropy production
on this new basis, obtaining the constraints

1
τεT

= 0 1
τnT

= 0 τεµ = τnn

µ0

∂ε
∂T

∂n
∂µ

∂ε
∂T − ∂n

∂T
∂ε
∂µ

τnµ =
τnn

∂ε
∂T

∂n
∂µ

∂ε
∂T − ∂n

∂T
∂ε
∂µ

(5.24)
Consider now a pair of differentiable functions3 Γε and Γn which, upon
linearization, give rise to generalized relaxations

δΓε = ∂Γε

∂µ
δµ+ ∂Γε

∂T
δT = δµ

τεµ
+ δT

τεT
(5.25a)

δΓn = ∂Γn

∂µ
δµ+ ∂Γn

∂T
δT = δµ

τnµ
+ δT

τnT
(5.25b)

If we want this to be consistent, then the linearized relaxations must satisfy
integrability conditions

∂

∂T

(
1
τεµ

)
= ∂

∂µ

( 1
τεT

)
∂

∂T

(
1
τnµ

)
= ∂

∂µ

( 1
τnT

)
(5.26)

because of the commutativity of the second derivatives of Γε and Γn. This
leads to

∂

∂µ

( 1
τεT

)
= 0 ∂

∂µ

( 1
τnT

)
= 0 (5.27)

thus, the most general τnn compatible with Onsager relations, second law of
thermodynamics and non-linear completion takes the form

1
τnn(T, µ) =

f(µ) ∂ε
∂T

∂n
∂µ

∂ε
∂T − ∂n

∂T
∂ε
∂µ

(5.28)

where f is an arbitrary function of µ. The remaining relaxations are uniquely
fixed in terms of τnn from (5.15) and (5.10).

5.3 Variational approach and Onsager relations
In the previous section we considered a charged relativistic fluid in the
presence of the most general linear relaxations, and found a set of very
generic constraints that the relaxation parameters must obey to satisfy
positivity of entropy production, Onsager relations and linear stability. Now
we investigate the same problem, but from the perspective of the variational
method, and give a prescription for how to obtain Onsager reciprocal Green
functions in flat spacetime using this approach.

To proceed we must find the current and stress-energy tensor which solve
the linearized equations of motion on a curved background gµν = ηµν + δhµν

3This Γε must not be confused with the one of the previous chapter (5.12).
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and with a gauge field perturbation δAµ. The linearized equations of motion
for an order one fluid in the Landau frame then take the form (2.61)

τµ∂µδε+ (ε0 + P0) ∇(0)
µ δvµ = −

( 1
τεε

δε+ 1
τεn

δn

)
(5.29a)

τµ∂µδn+ n0∇(0)
µ δvµ − σ

(
Pµν∇(0)

µ ∂νδµ− µ0
T0
Pµν∇(0)

µ ∂νδT − ∇(0)
µ δEµ

)
= −

( 1
τnε

δε+ 1
τnn

δn

)
(5.29b)

Pµν∂νδP − ζPµν∇(0)
ν ∇(0)

ρ δvρ + (ε0 + P0)Pµ
ρ

(
τν∇(0)

ν δvρ
)

− 2ηPµρ∇(0)
σ δσσ

ρ

= − 1
τm

(ε0 + P0) δvµ + n0δE
µ − P0P

µ
ν∇(0)

ρ δhρν − (ε0 + P0)Pµ
ρτ

νδΓρ
νστ

σ

(5.29c)

where Pµν = ηµν + τµτν is the projector orthogonal to the background
velocity τµ = (−1,0) and ∇(0)

µ is the covariant derivative computed with
respect to the background metric (if, like in the present case, we expand
around Minkowski metric, then ∇(0)

µ = ∂µ).
As we did in the previous section, we also included decay terms on the RHS.

We remark that because the relaxation rates break Lorentz symmetry they
cannot be uniquely written in a covariant form. This means that, depending
on the arbitrary choice of non-linear covariantizations, it is possible to find
different source terms associated to the relaxations, i.e. terms in which
a source fluctuation, δhµν or δAµ, multiplies a relaxation parameter. In
order to avoid making this choice, in (5.29) we have decided to keep the
relaxation terms as they appear in flat spacetime, without any possible source
contribution.

One can then solve the above linear equations to express the fluctuations
of the hydrodynamic fields in terms of the sources, plug the results into
the definitions of the generators J µ and T µν in (2.59) in the presence of
(linear) background source fields, and compute the complete set of Green
functions using (2.60), reducing to flat spacetime, zero gauge field at the
end. Proceeding in this way, we find that not all correlators are time-reversal
covariant, and some of them violate Onsager relations by terms explicitly
dependent on the relaxation rates, e.g.

⟨T ttT xx⟩ − ⟨T xxT tt⟩
∣∣∣
k=0

=

= −((ε0 + P0) (τnετεn − τnnτεε)) + iτnnτnε ((ε0 + P0)τεn + n0τεε)ω
τnnτεε + τnετεn (i+ τnnω) (i+ τεεω) (5.30)

The above expression is non-zero even after we impose (5.15) and (5.10) on
the relaxation parameters, furthermore some of the two-point functions are
different when computed from the variational and Martin-Kadanoff approach.
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All these issues are related to the presence of relaxations in our quasi-
hydrodynamic model. Therefore, we modify the linearized theory (5.29) by
including the most general set of extra source terms. Because we want to
make contact with the flat spacetime, zero gauge field limit of the previous
section, we will take these extra source terms to be proportional to the
fluctuations δhµν and δAµ, so that they vanish in the appropriate limit.
Furthermore, because the relaxation terms contain only ideal fluid data
(the τ parameters are never multiplied by derivatives of the hydrodynamic
fields), we restrict ourselves to extra source terms without any derivatives.
Schematically, we write

sources of (5.29) → sources of (5.29) + cµν
a δhµν + rµ

aδAµ (5.31)

and, with this new set of equations of motion, we compute again all the
correlators in the theory using the variational approach, which will now
depend on these extra coefficients cµν

a and rµ
a . In the expression above

we take a = (ε, n, x, y, z) to identify the corresponding equation of motion
(energy, charge or momentum along x, y or z).

From the above prescription we add in total 70 source terms, 14 for each
equation, however we can use symmetry arguments to reduce the number of
independent extra source terms. Specifically, our theory does not have any
scalar parameter that breaks parity, hence all the cµν

a and rµ
a must be parity

even. Furthermore, the background flat spacetime theory has rotational
invariance, which, together with P-symmetry, allows us to impose parity
with respect to a single axis Pi : i → −i, with i = x, y, z and reduce the
number of non-zero coefficients to only 13. Finally, because we take τm to
be isotropic, we also assume isotropy of the sources too, which reduces the
total number of independent non-vanishing coefficients to 9.

We can now take the full set of Green functions, that depends on these
extra parameters cµν

a and rµ
a , and impose Onsager reciprocal relations (5.4),

trying to fix the free coefficients in such a way that the correlators preserve
time-reversal covariance of the microscopic theory. The expressions are
very large, for this reason we first impose Onsager relations at k = 0 and
then at ω = ky = kz = 0. We found that this is enough to fix all nine
parameters in terms of the relaxations τs, and subsequently we checked that
these expressions lead to Green functions which obey Onsager relations at
arbitrary ω and k.

Of the nine extra source terms, we found that five of them are zero, while
the non-vanishing ones are

energy: −
(
δε

τεε
+ δn

τεn

)
− ctt

ε δhtt − rt
εδAt (5.32a)

charge: −
(
δε

τnε
+ δn

τnn

)
− ctt

n δhtt − rt
nδAt (5.32b)
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The value of the non-vanishing extra coefficients is given in terms of the
susceptibilities and relaxation rates

ctt
ε = 1

2

(
χεn

τεn
+ χεε

τεε

)
(5.33a)

rt
ε = χεε

τnε
+ χεn

τnn
= 2ctt

n (5.33b)

rt
n = χεn

τnε
+ χnn

τnn
(5.33c)

With these corrections the correlators computed using the variational ap-
proach agree with the ones obtained via Martin-Kadanoff, up to the usual
contact terms. Furthermore, we have not found other constraints on the re-
laxation parameters other than the one found already in the Martin-Kadanoff
framework (5.10).

It is worth pointing out that the value of the coefficients is not important,
what matters is that the final equations of motion (5.32) have the right form
after we substitute in the explicit values of rµ

a and cµν
a . In particular, we

explained above that we decided to write the relaxation terms as they appear
in flat space, agnostic on possible covariant completions. However, starting
from a specific covariant expression for the relaxation terms, we could find
relaxations-dependent source terms already in the undeformed equations of
motion (5.29). Then, adding all possible relaxations as in (5.32), we expect
different values for the coefficients ra and ca, but such that they lead to the
same final result.

Finally, we can also consider positivity of entropy production for the
linearized hydrodynamic theory with background source, particularly taking
into account the new metric and gauge field fluctuation terms discovered. In
this case, the divergence of the entropy current gives

T0∇(0)
µ δSµ = δε

(
µ0
τnε

− 1
τεε

)
+ δn

(
µ0
τnn

− 1
τεn

)
−
(
rt

ε − µ0r
t
n

)
δAt −

(
ctt

ε − µ0c
tt
n

)
δhtt + O(∂2, δ2) (5.34a)

However, it is easy to check that with the expressions in (5.33), positivity
of entropy production is satisfied if the relaxation rates obey the Martin-
Kadanoff constraints (5.15), specifically the new terms proportional to δAt

and δhtt in the equation above identically vanish and do not lead to further
constraints.

5.4 Summary, discussion and outlook
In this chapter we studied relativistic hydrodynamics in the presence of
relaxation terms in the linearized regime (5.6). We added all the possible
relaxations up to order zero in derivatives and order one in fluctuations, and
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computed all the constraints the relaxation rates must satisfy that arise from
microscopic time-reversal symmetry (5.10), positivity of entropy production
(5.15) and linear stability (5.21).

Subsequently, we included the same set of relaxations in a theory placed
on a weakly curved spacetime δhµν and in the presence of a linear gauge
field δAµ. The response functions computed from the variational approach
in general are not Onsager reciprocal and differ from the one obtained from
the Martin-Kadanoff procedure. To amend the problem, we added all the
possible terms linear in the external sources to the equations of motion (5.31),
each multiplied with a different unknown coefficient. What we found is that
the simple requirement of time-reversal invariance of the theory allows us to
uniquely fix all the newly added transport coefficients in terms of relaxation
rates and susceptibilities (5.33).

Although we tested this approach only for a relativistic charged fluid
on a flat spacetime without background magnetic fields, we expect the
procedure outlined in Section 5.3 to hold very generally, for fluids with
different symmetry content (boost-agnostic, Carrollian, Galilean, . . . ), with
different degrees of freedom (such as extra scalar fields), and for different
backgrounds (curved spacetime or constant magnetic fields).

The outlook for this paper is closely connected to the previous Chapter 4:
it would be interesting to study the generalized relaxations we introduced in
a broader context, particularly looking for realizations beyond the linearized
regime. Then, we could try to understand if the relaxation can enter the
constitutive relations by modifying certain terms as in [2], inducing new
transport coefficients [49] or renormalizing existing ones [157].

Finally, in the next chapter we are going to use certain results obtained
here to study the anomalous DC transport in Weyl semimetals. We will see
how generalized relaxations can be obtained from a kinetic theory perspective,
however it remains an open question how to arrive at the same result from
holography or Schwinger-Keldysh formalism.
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Chapter 6
Anomalous hydrodynamics and
Weyl semimetals

“I usually solve problems by letting them devour me.”

Franz Kafka, Letter to Max Brod

6.1 Introduction

One of the most peculiar features of quantum field theories is the presence of
anomalies: the breakdown of some classical symmetry due to quantum fluc-
tuations. One of the most well-known examples is the so-called chiral/axial
anomaly (or ABJ anomaly, after Adler, Bell and Jackiw [267, 268]), namely
the classical system enjoys a chiral symmetry, so that left- and right-handed
fermions are separately conserved, but the quantum system is anomalous
and there is mixing between left- and right-handed particles in the presence
of external electromagnetic fields [269–271].

More than a decade ago, following hints from holography [272, 273],
it was discovered that quantum anomalies could leave an imprint on the
macroscopic dynamics of fluids, not only by modifying the equations of
motion for the anomalous current, but also by allowing for extra transport
coefficients in the constitutive relations [34, 274, 275]. The anomalous terms
are non-dissipative and parity-odd, since they are proportional to the external
magnetic fields and vorticity. See some of the reviews [270, 271, 276] and
original works [34, 35, 277–279] for more details, also about the role of the
mixed-gravitational anomaly and the generating functional.

What was quickly realized is that anomalous hydrodynamics could play
an important role, not only for the description of heavy-ion collisions, but
also to understand the transport properties of Weyl semimetals (WSMs)

117



Chapter 6. Anomalous hydrodynamics and Weyl semimetals

Figure 6.1: Figure taken from [285]. Observation of longitudinal NMR in a sample
of doped NbP Weyl semimetal.

[16]. WSMs are a novel class of 3d topological quantum materials that host
gapless chiral excitations. In these compounds the valence and conductance
bands have linear crossing points (the Weyl nodes) close to the Fermi surface,
and the system enjoys an accidental chiral symmetry, such that the Weyl
nodes must always come in pairs of opposite chirality [280, 281]. If the
Weyl cones lie on top of each other, then the material is a Dirac semimetal,
but in the presence of parity or time-reversal symmetry breaking the cones
will be separated in momentum space, in which case we speak of a WSM.
Because of their chiral symmetry, many of their properties are strongly
influenced by the presence of the axial anomaly, thus allowing us to study
QFT anomalies in a controlled tabletop setting, contrary to what happens
with heavy-ion-collisions experiments. For some reviews on WSMs, see e.g.,
[282–284].

In particular, one of the most prominent features expected in WSMs due
to the anomaly is a large longitudinal negative magnetoresistance (NMR),
first argued in [286]. This means that, contrary to ordinary metals in which
the conductivity decreases with the applied magnetic field [287], in WSMs
we expect the longitudinal electrical conductivity (measured parallel to the
applied external magnetic field) to be strongly enhanced by the presence of
a background electric field. Indeed, longitudinal NMR has been observed
both for the electric and thermal transport in different compounds [285,
288–292]. In practice, real materials can have multiple source of longitudinal
NMR due to other effects, and distinguishing the various contributions from
experiments is generally difficult.

The NMR can be predicted from many different approaches, based on
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semiclassical models (such as diffusion or chiral kinetic theory [293]) or on
microscopic quantum models [17, 294–301], but also from hydrodynamic
arguments [16, 257, 260]. Furthermore, like other Dirac materials, WSMs
could enjoy an extended hydrodynamic regime, as observed in [132, 144,
154]. Consequently, anomalous hydrodynamics might apply reasonably well
to study the macroscopic transport dynamics of these systems.

In this chapter, we are going to discuss some questions related to anoma-
lous fluids and possible applications to models of WSMs. First, following [4],
we review the usual computations of the anomalous optical thermoelectric
conductivities and show that the NMR obtained in previous works is not
physical, since that different hydrodynamic frames lead to different results.
Specifically, the NMR depends quadratically on the applied magnetic field,
which means that order-one hydrodynamics with an order-one in derivatives
magnetic field is not appropriate to study the magnetic-field dependence
of the conductivities. We discuss this issue and suggest a way to properly
compute the NMR in Section 6.2.

Next, in Section 6.3 we discuss some problems related to the DC values
of the thermoelectric conductivities. We already discussed in the previous
chapter that hydrodynamics leads to finite DC conductivities only if there is
some effective mechanism to relax momentum [14], but in the presence of an
axial anomaly energy and axial charge should relax too for the conductivities
to be finite in the ω → 0 limit [257, 260]. However, we show that previous
models of anomalous relaxed hydrodynamics necessarily predict that electric
charge, energy and momentum should all relax at the same rate of the axial
charge, which we deem unphysical. Therefore, to build a better model, we
employ the generalized relaxations introduced in Chapter 5 and obtain a
theory of relaxed hydrodynamics which conserves the electric charge of the
system.

Finally, in Section 6.4, we show how these relaxations can be obtained
from kinetic theory, using an appropriate Relaxation-Time-Approximation
(RTA) ansatz for the scattering of electrons with impurities and phonons in
which the microscopic relaxation rate depends on the quasiparticle energy.

6.2 Anomalous hydrodynamics and transport

Remember that hydrodynamics, as an effective field theory, presents an
ambiguity in the choice of the hydrodynamic variables at derivative order,
see Section 2.1.4. By changing the definitions of temperature T , fluid velocity
uµ and chemical potential µ, we can change how the constitutive relations
look. This choice however is not physical, but a simple re-parametrization:
all frames, in the hydrodynamic regime, should give the same values for any
observable, therefore the conductivities, i.e. the retarded Green functions,
should take the same form in all hydrodynamic frames. Nevertheless, the
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choice of frame can have huge impact on certain aspects of the theory (such as
stability and causality) at high-frequency/high-momenta, see the discussion
in the Introduction 1.

In this section we consider order-one hydrodynamics with a U(1) anoma-
lous chiral current, and we show that the optical thermoelectric conductivities
computed in the presence of a background order-one magnetic field B ∼ O(∂)
are explicitly frame-dependent, which means that the contribution of the
anomaly to the conductivities is not a physical effect and should be discarded.

To resolve this problem, one could work with hydrodynamics at order two
in derivatives, however this would just shift the issue to the O(B3) subleading
corrections to the conductivities. Thus, to avoid the issue altogether, we
suggest working with an external magnetic field which is order zero in
derivatives B ∼ O(1), so that the expressions for the conductivities can be
trusted at any value of B without resorting to order-two hydrodynamics.

6.2.1 Standard approach to anomalous hydrodynamics

We consider now a hydrodynamic theory with a conserved stress-energy tensor
and a single U(1) anomalous chiral current in (3 + 1)-dimensional spacetime.
For the moment, we will not consider the effects of the gravitational anomaly
or other setups, however in later sections we will instead consider a theory
with symmetry U(1)V × U(1)A, which is the relevant symmetry content to
describe WSMs.

The equations of hydrodynamics for a covariant anomalous current1 and
stress-energy tensor in an external electromagnetic field are

∂µT
µν = F νλJλ (6.1a)

∂µJ
µ = cEµBµ (6.1b)

where c is the anomaly coefficient and its explicit value depends on the
microscopic theory. For the moment, following the standard approach [34,
275, 277], we are considering both Eµ and Bµ to be order one in derivatives
O(∂).

To write the constitutive relations for the anomalous fluid we will follow
the original work [34]. While there are now other methods, based on the
equilibrium generating functional [35, 277, 302], which are easier to generalize
to arbitrary dimensions or different anomalies (while also providing insights on
the appearance of the gravitational anomaly at order one in derivatives [278]),
the original approach gives a clearer picture on the issue of hydrodynamic
frames.

To begin, consider the constitutive relations in the Landau frame, and add
the most generic parity-odd terms which are order one in derivatives and that

1For a short discussion on covariant and consistent anomalies we refer to Appendix B.
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depend on the external magnetic field Bµ and vorticity Ωµ = ϵµνρσuν∂ρuσ.
Thus, we arrive at

Tµν = εuµuν + P∆µν + ξε
B (uµBν + uνBµ) + ξε

Ω (uµΩν + uνΩµ)
− η∆µα∆νβσαβ − ζ∆µν∂αu

α + O(∂2) (6.2a)

Jµ = nuµ + σ∆µν
(
Eν − T∂ν

µ

T

)
+ ξΩΩµ + ξBB

µ + O(∂2) (6.2b)

where σµν is the shear tensor. The quantities ξ are the anomalous parity-odd
dissipationless transport coefficients. Like σ, ζ and η their values depend on
the order-zero thermodynamic variables ξ(µ, T ), however, unlike the standard
dissipative transport coefficients, this dependence is almost entirely fixed by
the anomaly and the choice of hydrodynamic frame.

From a physical perspective, the ξΩ and ξB terms represent the well-
known Chiral Vortical Effect, Chiral Magnetic Effect (or Chiral Separation
Effect, if multiple currents are present) discussed in [279, 303, 304].

6.2.2 Positivity of entropy production

The constitutive relations must be constrained by the second law of thermo-
dynamics. To begin, we write the total entropy current Sµ as the sum of the
canonical entropy current (that is related to the standard non-anomalous
fluid) and a second contribution Sµ

n.c. that is related to the anomaly

Sµ = 1
T

(Puµ − Tµνuν − µJµ) + Sµ
n.c. (6.3)

This second term is needed to ensure positivity of entropy production holds,
and we can express it in a generic form as

Sµ
eq = ξs

BB
µ + ξs

ΩΩµ (6.4)

Subsequently, we can compute the divergence of the entropy current, using
the equations of motion and the constitutive relations in the usual way, to
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arrive at the following expression

∂µS
µ = ζ

T
θ2 + η

T
σµνσ

µν + σ

(
Eµ − T∂⊥

µ

µ

T

)2

+
(
∂ξs

B

∂T
+ µ

T

∂ξs
B

∂µ
− ξε

B

T 2

)
Bµ

(
∂⊥

µ T + Taµ

)
+
(
∂ξs

Ω
∂T

+ µ

T

∂ξs
Ω

∂µ
− ξε

Ω
T 2

)
Ωµ
(
∂⊥

µ T + Taµ

)
−
(
∂ξs

B

∂µ
− ξB

T

)
Bµ

(
Eµ − T∂⊥

µ

(
µ

T

))
−
(
∂ξs

Ω
∂µ

− ξΩ
T

)
Ωµ
(
Eµ − T∂⊥

µ

(
µ

T

))
+
(
ξs

B − T
∂ξs

B

∂T
− µ

∂ξs
B

∂µ

)
B · a+

(
2ξs

Ω − T
∂ξs

Ω
∂T

− µ
∂ξs

Ω
∂µ

)
Ω · a

+
(
∂ξs

B

∂µ
− cµ

T

)
E ·B +

(
∂ξs

Ω
∂µ

− ξs
B

)
E · Ω ≥ 0 (6.5)

where we defined ∂⊥
µ = ∆µν∂

ν .
When studying the positivity of entropy production, we can encounter

two different kinds of conditions: inequality type constraints, which are
related to the terms with positive definite signature in the first line, thus
requiring σ, ζ, η ≥ 0, and equality type constraints, which originate from
terms without definite sign and therefore their coefficients must vanish. This
is for example what we found in Section 2.1 when discussing χT , see (2.25).

We can employ the equations of motion of the ideal fluid to relate the
divergences of the vorticity and the magnetic field to other quantities as

∂µΩµ = − 2
ε+ P

Ωµ (∂µP − nEµ) (6.6a)

∂µB
µ = −2ΩµEµ + 1

ε+ P
(nEµB

µ −Bµ∂µP ) (6.6b)

which we can use to simplify the constraints that stem from the second law
of thermodynamics. The requirement that ∂µS

µ ≥ 0 means that we should
set to zero all the anomaly-related terms, which corresponds to

0 = ∂µξ
s
Ω − 2∂µP

ε+ P
ξs

Ω − ξΩ∂µ
µ

T
+
( 2∂µP

ε+ P
− aµ − ∂µ

)
ξε

Ω (6.7a)

0 = ∂µξ
s
B − ∂µP

ε+ P
ξs

B − ξB∂µ
µ

T
+
(
∂µP

ε+ P
− aµ − ∂µ

)
ξε

B (6.7b)

0 = 2nξs
Ω

ε+ P
− 2ξs

B + ξΩ
T

+ 2ξε
B − 2ξε

Ω
n

ε+ P
(6.7c)

0 = nξs
B

ε+ P
+ ξB

T
− c

µ

T
− ξε

B

n

ε+ P
(6.7d)
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The above set of equations is not closed: there are six different ξs, but
only four equations. This is because we kept ξε

B and ξε
Ω non-zero in the above

expressions, contrary to what is done in [34]. It is then clear that we need
some other constraints to uniquely determine the ξs, which come from the
choice of frame. In particular, the Landau frame matching conditions require
us to set ξε

B = ξε
Ω = 0, then we can integrate the above differential equations

to obtain, up to integration constants related to the gravitational anomaly
and CPT-violating terms [275], the following expressions

ξε
B = 0 ξB = c

(
µ− 1

2
nµ2

ε+ p

)
(6.8a)

ξε
Ω = 0 ξΩ = c

(
µ2 − 2

3
nµ3

ε+ p

)
(6.8b)

in agreement with [34].
Another possibility is to look for a frame in which the entropy current

receives no corrections [305], or one might prefer to work in the thermody-
namic frame, that keeps the definition of temperature, fluid velocity and
chemical potential the canonical ones (2.30).

To move from one frame to another, as we discussed in Section 2.1.4, we
have to change the definitions of the fluid fields by derivative corrections
which vanish in equilibrium. For the purpose of this discussion, i.e. frame
transformations that shift around the anomaly-related terms, the only frame
transformations we are interested in are of the form

uµ → uµ + fB(µ, T )Bµ + fΩ(µ, T )Ωµ (6.9)

which act on the constitutive relations by changing the values of the anoma-
lous coefficients as

ξε
B,Ω → ξε

B,Ω + (ε+ P )fB,Ω(µ, T ) (6.10a)
ξB,Ω → ξB,Ω + nfB,Ω(µ, T ) (6.10b)

Notice that the above frame transformations are allowed because both Bµ

and Ωµ are O(∂) and orthogonal to uµ. In particular, we can use

fB = cµ2

2 (ε+ P ) fΩ = cµ3

3 (ε+ P ) (6.11)

to move between the constitutive relations in the Landau frame (6.8) and
the thermodynamic frame, in which the anomalous transport coefficients
take the simplest form

ξε
B = 1

2cµ
2 ξB = cµ (6.12a)

ξε
Ω = 1

3cµ
3 ξΩ = 1

2cµ
2 (6.12b)
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6.2.3 Frame-dependent conductivities

Having discussed the constitutive relations, we now study how the choice
of frame affects the value of conductivities, at order one in derivatives. To
proceed, we can analyse more carefully the general argument from Section 2.2
that is used to solve for the retarded Green functions in hydrodynamics.
Consider the linearized hydrodynamic equations for a fluid order one in
derivatives, schematically

Dabϕb = λb + O(∂3) (6.13)

where Dab is an operator which is at least order one in derivatives, ϕa is
a vector of the fluctuating hydrodynamic fields ϕa =

(
δT, δµ, δvi

)
, and λa

are the external sources, like gauge fields, metric fluctuations, but also their
derivatives. If we consider order-one fluids, then both λa and Dab contain,
at most, terms with two derivatives.

In Fourier space we can introduce a formal parameter ϵ to count the
derivative order of the various terms. With the setup we are using we have
ω,k, B ∼ ϵ. Then, a generic Green function is obtained by inverting the
operator D and extracting the corresponding entry on the RHS (2.55), so
that schematically we arrive at

GR ∼ a(ω,k) + O(ϵ2)
b(ω,k) + O(ϵ3) (6.14)

where a and b are functions that depend on the correlator of interest. The
numerator is thus determined only up to order one in the counting parameter
ϵ, as a consequence of the fact that the constitutive relations for the currents
are known only up to order one in derivatives.

We can study the consequences of this argument on the anomalous
transport: consider the constitutive relations for the chiral fluid in a generic
frame (6.2). To compute the longitudinal magnetoresistance we need to
select a background with non-zero magnetic field B, which we take along ẑ,
F 12 = B, moreover we will have T and µ constant and zero spatial velocity.
With this choice of background the equilibrium configuration for the fluid is
given by

Tµν =


ε 0 0 ξε

BB
0 P 0 0
0 0 P 0

ξε
BB 0 0 P

 (6.15a)

Jµ = (n, 0, 0, ξBB) (6.15b)

We can now add linearized fluctuations to the hydrodynamic fields and
sources F 0z = δEz, and solve the equations of motion (6.1) in Fourier space
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to obtain the optical conductivities using the Martin-Kadanoff method as
discussed in Section 2.2.1.

Generally, we find that the fluctuations of the hydrodynamic fields depend
on the sources as, e.g.

δuz

∣∣
k=0 =

[
−in+ ϵ2αB2 + O(ϵ3)

(ε+ p)ωϵ+ O(ϵ3)

]
δEz (6.16)

with α some thermodynamic function. From the argument above, we know
that the O(ϵ2) dependence on the numerator should be discarded: it is not
physical and is an artefact of our equations and choice of the background.

Indeed, we can compute the leading-order dependence on the magnetic
field of the longitudinal electric conductivity (similar results hold for the
thermal and thermoelectric ones too) and check directly that this expression
depends explicitly on the hydrodynamic frame, proving that it is not physical

σ(ω) = σ + in2

ωw
+ iB2

ωw2( ∂ε
∂T

∂n
∂µ − ∂ε

∂µ
∂n
∂T )

[(
w
∂ξB

∂µ
− n

∂ξε
B

∂µ

)
(
w

(
c
∂ε

∂T
− ∂n

∂T
ξB

)
− ∂ε

∂T
nξB + 2 ∂n

∂T
nξε

B

)
−
(
w
∂ξB

∂T
− n

∂ξε
B

∂T

)
(
w

(
c
∂ε

∂µ
− ∂n

∂µ
ξB

)
− ∂ε

∂µ
nξB + 2∂n

∂µ
nξε

B

)]
(6.17)

where w = ε + P is the enthalpy density. The O(B2) term is explicitly
frame dependent, as it depends on the values of the anomalous transport
coefficients ξs and their derivatives.

We can compute the above formula in the Landau frame at ξε
B = 0 to

recover the results of [260], or we can plug in the thermodynamic-frame
transport coefficients (6.12) to get a different result [257].

Again, we emphasize that this observed frame dependence, and thus the
B2 correction in the conductivity, are the signature that we are incorrectly
keeping terms which are higher order in derivatives than our constitutive
relations allow us to. The B2 term should be discarded, it is not physical,
which means that the conductivities do not depend on the anomaly at all, at
this order in derivatives.

There are other issues with the thermoelectric conductivities computed
in different frames at order one in derivatives, which hint to the fact that the
magnetic-field dependent terms should be ignored. For example, in general
the correlators are not Onsager reciprocal α ̸= ᾱ, moreover computing the
conductivities using the gradient of the chemical potential as a source, instead
of δEz, leads to different results.

Notice that in anomalous hydrodynamics the equilibrium around which
we fluctuate also depend on the frame (6.15), while usually the equilibrium
configuration is frame independent. Although even in standard hydrodynam-
ics response functions computed in different frames can lead to apparently
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non-equivalent expressions, they can always be related to one another by
mapping the transport coefficients. In the anomalous case (6.17) such map
does not exist, because the parity-odd anomalous transport coefficients take
a specific value for each given frame, see (6.8) and (6.12).

6.2.4 Killing the ambiguity

It should be clear by now that the longitudinal conductivities in order-one
anomalous hydrodynamics do not have any dependence on the magnetic
field. To restore the NMR, i.e. to observe the effect of the anomaly on
transport, one way is to work at order two in derivatives [257, 306–308].
Then the O(B2) term in the conductivity is an honest physical effect and
can be trusted, however the same ambiguity would now arise at O(B3).

To avoid these problems altogether we suggest to simply consider the
magnetic field to be order zero in derivatives B ∼ O(1), so that it is an
integral part of the thermodynamics. With this choice, we can study the
anomalous transport without resorting to order-two hydrodynamics, and
furthermore we are allowed to trust our results at large values of B, since
we do not have to truncate the results at leading order in B2. Morally, we
can think of this procedure as a partial re-summation at all orders of the
hydrodynamic theory with B ∼ O(∂) (partial in the sense that we are not
including derivatives of B in the re-summation).

When B ∼ O(1) it cannot be used in frame transformations (6.9), then
the equilibrium configuration on a background with a fixed magnetic field
will be unique for all frames and the conductivities will be well-defined.

A theory with order-zero magnetic field has been studied in [179] for the
case of a single U(1) axial current. We can then start from their constitutive
relations to compute the thermoelectric transport of an anomalous fluid. We
will focus only on the ideal fluid: on one hand, because the expressions are
simpler (and even the conductivities of an ideal fluid can quickly become
complicated with relaxation terms, as we will see), on the other hand, because
this is already enough to observe anomalous transport phenomena.

We decompose the stress-energy tensor and the current with respect to
uµ in the usual way (2.4)

Tµν = Euµuν + P∆µν + Qµuν + Qνuµ + T µν (6.18a)
Jµ = Nuµ + J µ (6.18b)

and, because we are interested in the ideal fluid, we can use the hydrostatic
generating functional. We define the hydrodynamic fields in terms of the
metric, gauge field and Killing vector V µ in agreement with (2.30), which at
order one and higher defines the thermodynamic frame.

The non-anomalous part of the constitutive relations can be obtained
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from the standard generating functional

W [g,A] =
�

d3+1x
√

−gP (T, µ,B2) (6.19)

where the equilibrium pressure now depends also on B2. Varying with respect
to metric and gauge fluctuations as explained in Section 2.1.7, we arrive at
the constitutive relations

E = −P + sT + µn (6.20a)

P = P − 2
3χBB

2 (6.20b)

Qµ = −χBϵ
µνρσuνEρBσ (6.20c)

T µν = χB

(
BµBν − 1

3∆µνB2
)

(6.20d)

N = n (6.20e)
J µ = ϵµνρσuν∇ρmσ + ϵµνρσuνaρmσ (6.20f)

where we introduced the magnetization and magnetic susceptibility as

mµ = χBB
µ χB = 2 ∂P

∂B2 (6.21)

This completely characterizes the ideal fluid constitutive relations without
anomaly with an order-zero magnetic field.

Finally, we need to introduce the parity-odd contributions due to the
anomaly. The details can be found in [179, 277]. In 3 + 1-dimensions, the
anomalous generating functional for the covariant current takes the form

Wanom =
�

d3+1x
√

−g c3µ B
µAµ− c

24

�
d4+1x

√
−GϵmnopqAmFnoFpq .

(6.22)

The first term is responsible for generating the consistent-anomaly constitu-
tive relations [309, 310], the latter term instead is the anomaly-inflow Chern-
Simons functional [311], whose boundary contributions are the Bardeen-
Zumino currents that make the total current covariant [271], see Appendix B.
By varying this functional with respect to metric and gauge fluctuations we
find the two anomalous transport coefficients for the covariant current as

ξε
B = 1

2cµ
2 ξB = cµ (6.23)

These coefficients agree with the thermodynamic frame, obviously: they are
obtained from the same generating functional (6.22) in which the magnetic
field has been promoted to be B ∼ O(1). Nevertheless, even if the contribu-
tion to the constitutive relations due to the anomaly is the same as in the
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thermodynamic frame, the longitudinal optical conductivities computed on
a background at constant B are different

σ(ω) = i

ω

[
n2

(p+ ε) + ΞB2
]

+ O(ω0) (6.24a)

α(ω) = i

ω

[
ns

(p+ ε) − µΞB2
]

+ O(ω0) (6.24b)

κ̄(ω) = i

ω

[
s2T

(p+ ε) + µ2ΞB2

T

]
+ O(ω0) (6.24c)

where

Ξ =
c2s2T 2( ∂n

∂T µ− ∂ε
∂T )

(p+ ε)( ∂ε
∂µ

∂n
∂T − ∂ε

∂T
∂n
∂µ) +B2c2µ2( ∂ε

∂T − ∂n
∂T µ)

(6.24d)

This is because now the expressions must not be truncated at O(B0), but
can be taken to be valid also for large values of B. In the above expressions,
all thermodynamic quantities are now functions of T , µ and B2.

The conductivities (6.24) are finally well-defined: the anomalous magneto-
resistance contribution is a physical effect, they do not change upon frame
transformations, and are Onsager reciprocal. Furthermore, they obey the
standard Ward identities that hold also for non-anomalous hydrodynamics
(2.74).

With this simple computation we correct a derivative-counting mistake
that was unnoticed and easy to miss in the literature. In particular, we
characterize the full magnetic-field dependence of the longitudinal magneto-
resistance for an anomalous fluid in arbitrary background magnetic field. It
is possible, by following [179], to also include order-one corrections to such
anomalous fluid. What we expect to find is that, contrary to what is usually
believed, other transport coefficients should enter the conductivities together
with σ2.

6.3 The problem with DC conductivities

6.3.1 Weyl semimetals, hydrodynamics and transport

In this section we consider a hydrodynamic model for WSMs. We focus
on the simplest case of a WSM with two Weyl nodes of opposite chirality
separated in momentum space by a vector bµ, thus the low-energy excitations
are massless Weyl fermions.

Classically, we would expect two separate conserved currents U(1)L ×
U(1)R, for the left- and right-handed particles, however due to quantum

2We still expect σ to be the only relevant transport coefficient when expanding at small
magnetic field.
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fluctuations these currents become anomalous. It is then convenient to
describe the system in terms of vector and axial currents

Jµ = Jµ
+ + Jµ

− Jµ
5 = Jµ

+ − Jµ
− (6.25)

so that the vector electric current, protected by the gauge symmetry, is
conserved, while the axial one is anomalous. The hydrodynamic equations
of motion for the covariant currents are simply

∂µT
µν = F νλJλ (6.26a)

∂µJ
µ = 0 (6.26b)

∂µJ
µ
5 = cE ·B (6.26c)

where c is again the axial anomaly coefficient.
In our setup we are considering a single fluid with two different species of

particles, which is the simplest and more realistic setup for interacting Weyl
nodes. However, if the two Weyl nodes are very far separated in momentum
space bµ ≫ T , one could also consider the Weyl nodes to give rise to two
separate, weakly-interacting fluids at different temperatures and chemical
potentials, such that each fluid conserves energy and momentum [16].

Using the insight of the previous section, we study the WSM in the
hydrodynamic regime using ideal fluid dynamics with an order zero magnetic
field B ∼ O(1). Then the constitutive relations (neglecting magnetization
terms which are irrelevant for the longitudinal transport) read

Tµν = εuµuν + P∆µν + ξε (Bµuν +Bνuµ) (6.27a)
Jµ = nuµ + ξBµ (6.27b)
Jµ

5 = n5u
µ + ξ5B

µ (6.27c)

where n5 = n5(T, µ, µ5, B
2) is the axial charge density and, like every other

thermodynamic quantity, in general depends on the temperature, the two
chemical potentials, and the external magnetic field. The ξs are the anoma-
lous transport coefficients and take the value [271]

ξ = cµ5 ξ5 = cµ ξε = cµµ5 (6.28)

Interestingly, there are no contributions due to the mixed axial-gravitational
anomaly in the anomalous transport coefficients multiplying the magnetic
field, which would appear as a term proportional to the temperature. This
fact, as we will see, has the important consequence that the DC thermal and
thermoelectric conductivities are not anomalous.

From this setup we can now simply compute the full longitudinal thermo-
electric matrix (2.66) in linear response theory. We consider a background
with zero spatial velocity, constant T , µ and µ5, and an external magnetic
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field along the ẑ axis. Around this background we add fluctuations and linear
sources parallel to the magnetic field

T → T + δT − Tzδζz µ → µ+ δµ µ5 → µ5 + δµ5

uµ → (1, δv) F 0z → δEz (6.29)

where δζi and δEi are, as usually, the thermal and electric source respectively,
see Section 2.2.4. Finally, the linearized canonical heat current is defined as
δQi = δT 0i − µδJ i − µ5δJ

i
5.

6.3.2 DC limits and relaxation terms

Unexpectedly, when we compute the full thermoelectric matrix at non-zero
frequency using the prescription above, we find that the DC limits of the
conductivities diverge.

We have already discussed in Chapter 4 and 5 the importance of momen-
tum relaxation to obtain finite DC conductivities: the electric field keeps
adding momentum to the fluid without bound, so a mechanism to balance
this effect and dissipate momentum on a timescale τm is needed. In the case
of anomalous fluids, however, we also need energy and axial charge relaxation.
The former comes from the fact that the covariant current J ∝ B is not zero
in the background with a constant magnetic field, due to the anomalous
current, subsequently the joule heating term E · J ∼ E · B is not zero either
and the energy of the fluid keeps increasing without bound even at zero
velocity, unless energy relaxation is present. Finally, axial charge decay is
also needed, to balance the effect of the anomaly itself E · B, which otherwise
would lead to an infinite axial charge. These terms act as soft cut-off for the
associated conserved charge, rendering the conductivities finite.

From a physical perspective, the presence of these relaxations in WSMs
can also be argued from a microscopic point of view. Momentum relaxation
is a feature of all metals, due to the presence of impurities and phonons that
can take away momentum [114, 115, 121]. A finite axial charge relaxation
time τ5 is also expected for Weyl semimetals, because the chiral symmetry is
not exact, but only approximate. In particular, the electronic bands are not
linear at arbitrary-high momenta, and instead they flatten, leading to an
effective mass for the chiral particles which destroy the anomaly. Furthermore,
arguments from topology requires WSMs to have multiple Weyl cones in
each Brillouin zone [281], such that the total Berry curvature is zero, but this
allows particles of opposite chirality to interact with each other via impurities
(the so-called inter-valley scattering) and this leads to a finite axial charge
depletion rate τ5. Lastly, energy relaxation τε can happen in the presence of
phonons, that can take away energy from the electron fluid [114, 121].

Although finite momentum, energy and axial charge relaxations can
be present in Weyl semimetals, they are caused by different microscopic
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phenomena, as we have just discussed, hence we would anticipate the various
relaxation rates to have different values in real materials. Specifically, we
expect electric charge to be exactly conserved (it is protected by the gauge
symmetry), while energy relaxation should be a subleading effect compared
to momentum and axial charge relaxation, which can also be rather strong
effects τε ≫ τ5, τm.

Keeping in mind this discussion, we now study some possible approaches
to relaxations in anomalous fluids. Specifically, we constrain our model from
three fundamental and phenomenological assumptions: the fluid must have
finite DC conductivities in real samples, electric charge is conserved (or, at
least, the decay rate τ−1 can be tuned to be arbitrary small), and finally the
Green functions must obey Onsager relations.

Option 1: Canonical charge relaxation

The first and simplest case is the one used in [257, 260, 262], and is the
most straightforward generalization of the momentum relaxation term in
[14]. Namely, this corresponds to relaxing the total charge densities in the
frame of the laboratory. In this approach we modify the linearized equations
of motion to take the following form

∂µδT
µ0 = δ(F 0λJλ) − 1

τε
δT 00 , (6.30a)

∂µδT
µi = δ(F iλJλ) − 1

τm
δT 0i , (6.30b)

∂µδJ
µ = − 1

τn
δJ0 , (6.30c)

∂µδJ
µ
5 = cδE ·B − 1

τ5
δJ0

5 . (6.30d)

Notice that we also included a possible electric-charge relaxation term, not
present in the original works, and which is not necessary to obtain finite DC
results.

First, we notice that all the longitudinal DC conductivities computed
from this model are anomalous, meaning that they all depend on c2B2

in a non-trivial way. Specifically the scaling is not simply quadratic in
the magnetic field, since it also appears in the denominator (the linear B2

dependence is recovered only in the limit of small magnetic field). Although
the expressions are too large to report here, we can write the results at zero
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axial chemical potential µ5 = n5 = ∂n5
∂µ = ∂n5

∂T = 0 obtaining

σ =
n2 ∂n5

∂µ5
τm +B2c2 (sTτ5 − nµτm)
∂n5
∂µ5

(P + ε) −B2c2µ2 , (6.31a)

α =
s2 ∂n5

∂µ5
Tτm

∂n5
∂µ5

(P + ε) −B2c2µ2 , (6.31b)

κ̄ =
s
(
n∂n5

∂µ5
−B2c2µ

)
τm

∂n5
∂µ5

(P + ε) −B2c2µ2 . (6.31c)

Notice that in the non-chiral regime, only axial charge and momentum
relaxation are needed to obtain finite DC conductivities. This is expected,
since at µ5 = 0 there is no background current J = 0, see (6.28), and thus
no Joule heating happens.

There is however one problem with the above approach: in general, on
a background with µ5 ̸= 0, α and κ̄ depend only on τm, while σ and ᾱ
also on τ5 and τε. Thus, when we impose Onsager relations α = ᾱ, we find
that time-reversal invariance implies that all relaxation rates must be equal
τε = τ5 = τn = τm. This result is against our working assumptions (electric
charge is not conserved) and contradicts phenomenological expectations, for
which we expect the relaxation rates to be different, since they should come
from various microscopic processes.

Hence, we are forced to look for other approaches to obtain finite con-
ductivities, while also preserving charge conservation.

Option 2: Normal charge relaxation

Looking at the relaxation terms of the previous paragraph, we see that the
linearized charge densities observed in the laboratory are always composed
of two terms: one is the normal charge density, respectively δε, δn, δn5,
(P + ε)δvi, while the second one is the anomalous contribution that comes
from the effect of Lorentz boost on the anomaly-related terms ξBµ.

However, we know that the anomalous part of the fluid does not produce
entropy, create drag or heat [266, 312, 313] and has superfluid-like behaviour3.
Particularly, a chiral fluid in a constant magnetic field in the presence of
impurities will relax the momentum until its equilibrium velocity is zero, but
the anomalous momentum will keep flowing past the impurities. Furthermore,
even arguments from kinetic theory suggest that only the normal part of the
fluid should relax [314, 315].

Then, following these lines of reasoning, we propose that the relaxation
rates of the previous section should be modified in order to relax only the

3Of course, it is not a real superfluid, since it carries entropy, but it shares some
phenomenological similarities, such as a persistent dissipationless current.
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normal fluid components

δT 00

τε
= 1
τε

(δε+ 2cµµ5B · δv) −→ δε

τε
(6.32a)

δT 0i

τm
= 1
τm

[
(ε+ P )δvi +Bic(µ5δµ+ µδµ5)

]
−→ ε+ P

τm
δvi (6.32b)

δJ0

τn
= 1
τn

(δn+ cµ5B · δv) −→ δn

τn
(6.32c)

δJ0
5

τ5
= 1
τ5

(δn5 + cµB · δv) −→ δn5
τ5

(6.32d)

This partially solves the problems of the previous approach, namely with
this choice momentum relaxation (τm ≥ 0 for stability) now decouples from
the other relaxations and is arbitrary, however Onsager relations (2.63) still
require that all other relaxation rates must take the same value τn = τ5 = τε,
which is again in strong disagreement with phenomenological and theoretical
arguments.

The conductivities computed from this approach are qualitatively and
quantitatively different from the previous case: all conductivities now depend
on energy, momentum and axial charge relaxation, however in DC only the
electric conductivity remains anomalous, and with a simple B2 dependence,
while the other ones take the standard hydrodynamic form (2.73). This,
as we have already argued above, is due to the fact that the linearized
canonical heat current does not have any anomaly-related term, and that the
anomalous transport coefficients ξs do not contain T -dependent contributions
induced by the mixed-gravitational anomaly4.

Finally, at zero chemical potential µ5 = n5 = ∂n5
∂µ = ∂n5

∂T = 0 we find that
the DC electric conductivity is

σ = n2τm

P + ε
+ B2c2τ5

∂n5
∂µ5

. (6.33)

while the other conductivities take on their standard hydrodynamic form
that depends only on τm.

This approach already leads to an interesting result, specifically a different
prediction for the thermoelectric transport compared to other studies. In
older works [16, 257, 276, 300, 316–318] the anomaly seems to appear also
in the thermoelectric conductivity from hydrodynamics, lattice simulations
and kinetic theory approaches. This difference can be understood because
the authors either relax the total charge, use different assumptions on the

4We remind that the thermal conductivity measured in experiments κ is related to
the one obtained from linear response κ̄ via κ = κ̄ − T α2/σ, see the discussion around
(2.67). Thus, even if κ̄ is not anomalous in DC, the same is not true for κ̄, which inherits
a magnetoresistance from σ.
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model (e.g. having two separate fluids for each Weyl cone) or simply are not
in the hydrodynamic regime. This prediction is then open to experimental
verification [288, 291, 292] and could be used as a probe of single-fluid
hydrodynamic anomalous transport, although practically it can be difficult
to disentangle the various contribution to the magnetoresistance and to
isolate the effect of the anomaly.

Option 3: Generalised relaxations

In the previous section we managed to decouple momentum relaxation from
the other decay rates, however electric charge must still relax for the system
to obey Onsager relations, and moreover the relaxations must all be equal. To
improve the model, we propose to use the generalized relaxation of Chapter 5.

Following the previous chapter, we then consider the most general set of
relaxations

energy: 1
τεε
δε+ 1

τεn
δn+ 1

τεn5
δn5

charge: 1
τnε
δε+ 1

τnn
δn+ 1

τnn5
δn5

axial charge: 1
τn5ε

δε+ 1
τn5n

δn+ 1
τn5n5

δn5

 = τ̂ · φ , (6.34)

where φ = (δε, δn, δn5) and τ̂ is the 3 × 3 matrix of inverse relaxation times.
We can again employ Onsager relations (2.63) on these relaxed equations of
motion to find the constraints that the relaxation times must obey for the
system to preserve time-reversal invariance (5.4). Thus, we find

0 = χnn5

τεn5
+ χnn

τεn
− χεn5

τnn5
+ χεn

τεε
− χεn

τnn
− χεε

τnε
, (6.35a)

0 = χn5n5

τεn5
+ χnn5

τεn
− χεn5

τn5n5
+ χεn5

τεε
− χεn

τn5n
− χεε

τn5ε
, (6.35b)

0 = χn5n5

τnn5
− χnn5

τn5n5
+ χnn5

τnn
− χnn

τn5n
+ χεn5

τnε
− χεn

τn5ε
, (6.35c)

or in matrix formulation

τ̂ · χ̂− χ̂ · τ̂T = 0 , (6.36)

where χ̂ is the 3 × 3 susceptibility matrix for the energy, electric and axial
charge, while T denotes the transpose matrix. In agreement with the previous
case, these constraints tell us that if we set the off-diagonal relaxations to
zero, then Onsager relations imply τnn = τn5n5 = τεε.

The claim is that we now have enough parameters to satisfy all our
requirements, namely: finite DC conductivities, charge conservation and
Onsager relations (microscopic time-reversal invariance). To begin the anal-
ysis of the parameter space, first we set to zero the charge relaxations
τ−1

nn = τ−1
nn5 = τ−1

nε = 0 so that the electric charge is exactly conserved. Thus,
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starting from 9 relaxation (plus momentum τm, which we decoupled in the
previous section) we are left with only 6 non-zero relaxations. There are 3
Onsager conditions, which reduce the number of independent parameters
to only 3, which we assume to be τεε, τn5n5 and τn5ε, and express the other
relaxations rates as functions of them.

This setup is guaranteed to lead to conductivities which are Onsager
reciprocal, however the only way to check if they are also finite in DC is to
perform the computation explicitly, and we find that they are indeed finite.
Notice that this is not trivial: from Onsager relations alone one might be
tempted to set to zero also τ−1

εn = τ−1
n5n = 0, leaving τn5n5 as the only free

parameter5, however the conductivities computed on this setup are not DC
finite.

From a qualitative perspective the conductivities computed with gener-
alized relaxations are similar to the ones analysed in the previous section:
all conductivities depend on all relaxation rates, however in DC only the
electric conductivity is anomalous, while the other conductivities are not.
Furthermore, at zero axial chemical potential we have the freedom to also
conserve energy, namely τ−1

εn = τ−1
εε = τ−1

εn5 = 0. Following the argument
below (6.31), this is expected: energy relaxation is needed to balance the
Joule heating term E · J with J ∝ B, however at µ5 = 0 the electric current
is zero and not anomalous, thus we expect no Joule heating.

Remarkably, with the above setup we cannot also impose positivity of
entropy production. Following the approach of Chapter 5 on the linearized
second law of thermodynamics, we find the following set of constraints

0 = 1
τεε

− µ

τnε
− µ5
τn5ε

, (6.37a)

0 = 1
τεn5

− µ

τnn5
− µ5
τn5n5

, (6.37b)

0 = 1
τεn

− µ

τnn
− µ5
τn5n

. (6.37c)

However, it is not possible to have electric charge conservation τ−1
nn = τ−1

nn5 =
τ−1

nε = 0, positivity of entropy production (6.37) and time-reversal covariance
(6.35) with generalized relaxations. Indeed, charge conservation reduces
the number of relaxation parameters from 9 to 6, Onsager relations and
positivity of entropy production each correspond to three equations, but the
only solution to the whole set of equations is the trivial one that sets all
the relaxations to zero. We remark that this conclusion, however, is not too
problematic, since generalized relaxations can be understood in terms of the
fluid interacting with the environment and thus describing an open system
(it can lose energy, charge and also entropy).

5From 9 initial relaxations, 5 are set to zero τ−1
nn = τ−1

nn5 = τ−1
nε = τ−1

εn = τ−1
n5n = 0, thus

only 4 are non-vanishing, but with 3 Onsager conditions we are left with a 1-parameter
family of solutions.
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Finally, we can briefly comment that in the presence of charged impurities,
or multiple gates, one might have an arbitrary small effective electric charge
relaxation. However, this can be easily incorporated using generalized
relaxations as an extra parameter that can be tuned at will.

To conclude, generalized relaxations allow us to obtain finite DC con-
ductivities, which obey Onsager relations and that conserve the electric
charge. Furthermore, the six non-zero relaxations are constrained by only
three equations, meaning that the parameter space can accommodate for
different phenomenological timescales for which e.g., energy relaxation can
be parametrically smaller than axial charge decay rate.

6.4 Kinetic theory

In Chapter 5 we introduced the generalized relaxations with arguments
uniquely based on the EFT prescription, while above we argued how they
are necessary to properly describe the DC transport in models of Weyl
semimetals. However, we still have to show that generalized relaxation can
actually happen in condensed matter systems. This is exactly what we are
going to do in this section: we will show that if charge relaxations are present
at all in the system, then we should always expect generalized relaxations
that take exactly the form described in Chapter 5, and obey Onsager relations
(6.35). We will do this by using suitable energy-dependent modifications of
the Relaxation Time Approximation (RTA for short), which are supported
by microscopic collision integrals with impurities and phonons.

Notice that Onsager constraints (6.35) and the structure of generalized
relaxations (6.34) do not depend on the anomaly when we relax only the non-
anomalous charges, thus they hold true for all fluids (even if their relevance
becomes more apparent in anomalous hydrodynamics). This means that
we can use non-chiral kinetic theory to justify their presence. Although
not necessary, we will consider a linear dispersion relation such as in Weyl
semimetals, so that we can perform certain computations analytically. First,
we will focus on a single-current ideal fluid, and we will explain how to obtain
generalized relaxations from modifications of the RTA in this simpler case,
matching the expressions of the previous Chapter 5. After that we will move
to the case relevant to Weyl semimetals, namely that of two chiral currents
as in Section 6.3, and we will discuss possible scattering mechanisms there.

136



Chapter 6. Anomalous hydrodynamics and Weyl semimetals

6.4.1 A primer on kinetic theory and hydrodynamics

Consider the relativistic Boltzmann equation for the one-particle distribution
function f(x,p, t) = fp in the absence of external forces6

∂tfp + p · ∇fp = Icoll[fp] (6.38)

with p the quasiparticle momentum and Icoll the collision integral, which is
a functional of fp.

In the simplest case, which is often used to construct hydrodynamics
from kinetic theory, we consider only a single species of particles (in our
case, dressed electrons) for which 2-to-2 particles scatterings dominate. Then
Icoll = Iee and corresponds to the usual textbook electron-electron collision
integral [90, 114, 319]. Under standard assumptions about the microscopic
scattering, such as unitarity, conservation of energy and momentum, time-
reversal and parity symmetry, and the hypothesis of molecular chaos, the
electron-electron collision integral is written as

Iee =
�

d3p2 d3p′
1 d3p′

2Wp′
1p′

2→pp2

(
fp′

1
fp′

2
[1 + afp][1 + afp2 ]

−fpfp2 [1 + afp′
1
][1 + afp′

2
]
)

(6.39)

where a = ±1 for bosons/fermions and a = 0 for classical particles, while
Wp′

1p′
2→pp2

is the scattering rate.
From here, it can be shown that the collision integral vanishes when fp

satisfies the detailed balance equation

log
(

fp′
1

1 + afp′
1

)
+ log

(
fp′

2

1 + afp′
2

)
= log

(
fp

1 + afp

)
+ log

(
fp2

1 + afp2

)
(6.40)

which is understood as a conservation equation (p′
1 and p′

2 are after the
collision, p and p2 before). Hence, the logarithm solves the detailed balance
when it is proportional to the conserved quantities in the system: energy,
momentum and particle number. The solution is then given by the local
thermodynamic equilibrium (LTE) form of fp as a Fermi-Dirac (for a = −1)
distribution

f eq
p = 1

1 + e(εp−u·p−µ)/T
(6.41)

where the Lagrange multipliers T , µ and u are functions of space. The
LTE distribution function solves the collision integral, however it does not
vanish on the LHS of the Boltzmann equation (only global thermodynamic
equilibrium solves the full equation), nonetheless in the hydrodynamic regime
the non-vanishing of the LHS corresponds to small gradient corrections. For

6External forces correspond, in the hydrodynamic picture, to the Maxwell term in the
stress-energy tensor conservation equation.
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this reason, the ideal fluid corresponds in the kinetic-theory picture to LTE
(6.41), while higher derivative corrections in hydrodynamics take us away
from LTE.

Given the LTE form f eq
p and the dispersion relation ε(p) = εp we can

compute thermodynamic quantities in local equilibrium, by integrating over
momentum space and summing over particles and holes contributions

εeq(T, µ) =
∑
p,h

� d3p
(2π)3 εpf

eq
p (6.42a)

neq(T, µ) =
∑
p,h

� d3p
(2π)3 f

eq
p (6.42b)

Finally, to obtain the hydrodynamic equations of motions we simply multiply
the Boltzmann equation by εp, p or 1 and then integrate over the quasiparticle
momentum. In particular, given the electron-electron collision integral (6.39),
it can be shown that it vanishes when integrated over conserved quantities,
independently on the form of the distribution function fp. Specifically

� d3p
(2π)3A(x,p)Iee[fp] = 0 for A = {εp,p, 1} (6.43)

Thus, multiplying with εp, p, or 1 and integrating the Boltzmann equation
over momentum space, we recover the equations of ideal hydrodynamics.

If one wishes to go beyond order zero in the hydrodynamic derivative
expansion the distribution function receives out-of-equilibrium corrections,
which can be computed perturbatively (e.g. in Knudsen number) [90, 91]

fp = f eq
p + δfp (6.44)

However, the non-equilibrium distribution function fp does not solve the
electron-electron collision integral, hence to make progress we linearize it
and employ the standard RTA [114]7

Iee ≈ −fp − f eq
p

τ
= −δfp

τ
(6.45)

with τ some constant that represents the timescale it takes for the system to
relax to equilibrium.

Importantly, the RTA is only a crude model for the real linearized collision
integral, and does not inherit all of its properties [319]: the only property
that survives this approximation is the vanishing of Icoll when fp takes the
Fermi-Dirac form (6.41), Icoll[f eq

p ] = 0. Indeed, the RTA model does not
vanish when integrated in momentum space against conserved quantities

7We are not using the relativistic form of the RTA [93, 320] since this form is enough
for the present discussion.
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(6.43), this means that the equations of hydrodynamics receive corrections
as decay terms at order one in derivatives

∂tε+ . . . = −ε− εeq

τ
(6.46a)

∂tn+ . . . = −n− neq

τ
(6.46b)

Then, enforcing the equations of hydrodynamics to hold true, we are led
to the requirements ε = εeq and n = neq, which are part of the Landau
matching conditions used to fix the hydrodynamic frame8.

Because in what follows we will only be interested in perfect fluids to
match the discussion of the previous section, fp will always be in LTE. Thus,
we drop the eq superscript from now on and simply call fp the LTE form
of the Fermi-Dirac distribution (6.41). Similarly, we will avoid using eq to
define the equilibrium energy and charge, since they are always assumed to
be in LTE.

6.4.2 Adding momentum relaxation

We will now focus on ideal fluid dynamics and, following [126, 314], we will
see how to modify kinetic theory to incorporate a momentum relaxation
effect in the equations of hydrodynamics.

Given the Fermi-Dirac distribution (6.41) we can expand it at small
velocity

fp ≈ f (0) − (p · u)∂f
(0)

∂εp
with f (0) = 1

1 + e(εp−µ)/T
(6.47)

where f (0) indicates the zero velocity distribution function. We can compute
the energy and charge density for massless fermions by employing a linear
dispersion relation εp = p (we are setting the Fermi velocity to unity).
Because of the linearization at small velocity, the second term linear in u
does not contribute to any thermodynamic quantity, since it vanishes when
integrated in momentum space, see the integrals in the Appendix A. Then
we find

ε = 15µ4 + 30π2T 2µ2 + 7π4T 4

120π2 (6.48a)

n = µ

(
µ2

6π2 + T 2

6

)
(6.48b)

while the pressure is P = ε/3.
8Notice that, using the method developed in [93], it is possible to obtain hydrodynamics

from kinetic theory in any frame.
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To include momentum relaxation effects in the hydrodynamic picture,
we now assume the RTA ansatz given by

Iimp ≈ −fp − f (0)

τm
(6.49)

The form of the RTA is such that it vanishes when integrated against the
quasiparticle energy and the identity, while it gives the momentum relaxation
term we seek when integrated against the quasi-momentum p

∂t(ε+ P )vi + · · · = −(ε+ P )vi

τm
(6.50)

This RTA is physically very different from the standard one (6.45): first,
here both fp and f (0) are LTE solutions, hence they both make the electron-
electron collision integral (6.39) vanish, while this is not true in (6.45).
Furthermore, this RTA has physical effects and leads to momentum relaxation,
while the electron-electron RTA model was only used to impose Landau
matching conditions. We remark that momentum relaxation behaves as an
extra constraint on the theory, and acts in such a way that of all the possible
equilibrium solutions with different constant velocities (which are related by
boosts), only the zero-velocity equilibrium is actually picked by the system.

The expression in (6.49) can be justified from electron-impurity scatter-
ings. Consider a collision integral that takes the following form

Icoll = Iee + Iimp (6.51)

The first term is the electron-electron scattering of (6.39): in the hydrody-
namic regime it dominates (its associated timescale is very short) and its
role is to force the distribution function to be Fermi-Dirac. The second term
instead describes interaction of electrons with impurities and is assumed to
be a weak correction (so that a quasihydrodynamic description still applies,
and momentum is still a relevant degree of freedom). The electron-impurity
collision integral takes the simple form [114]

Iimp =
�

d3p′Wp→p′ [fp − fp′ ]δ(εp − εp′) (6.52)

where again Wp→p′ is the scattering rate. Following the usual approach of the
detailed balance (6.40), we should look for solutions to this collision integral
(among the spectrum of all the LTE solutions, required by the vanishing of
Iee). However, these are exactly the zero-velocity distribution functions f (0)

we introduced in (6.47), therefore a good ansatz for an RTA model of this
collision integral should vanish when fp = f (0), and we are led to (6.49).
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6.4.3 Adding charge relaxations

Having understood how to include momentum relaxation in our hydrody-
namic model from kinetic theory, we can now follow the same logic to include
energy and charge relaxation in the system.

In particular, the momentum-relaxing RTA suggests we can add charge
relaxation by including an additional collision integral into Icoll that depends
on f̄ (0), so that the system relaxes to a reference LTE solution with fixed
energy ε̄ and charge n̄ respectively. With this new quantity at hand, the
most generic RTA is

Icoll − Iee ≈ −fp − f (0)

τ ′
m

− fp − f̄ (0)

τn
= −fp − f (0)

τm
− f (0) − f̄ (0)

τn
(6.53)

where f̄ (0) has the same form of f (0)

f̄ (0) = 1
1 + e(εp−µ̄)/T̄

(6.54)

but now computed at fixed reference values of temperature T̄ and chemical
potential µ̄. From now on, we will assume that all barred thermodynamic
quantities are computed with respect to f̄ (0) and are thus functions of T̄
and µ̄. In the second equality we redefined τm to separate the RTA in terms
which induce different relaxations: the former is zero on the charge and
energy equations, and only gives momentum relaxation, while the latter
relaxes energy and charge at the same rate τn and vanishes in the momentum
equation, see again the integrals in the Appendix A. With the collision
integral (6.53) the equations of hydrodynamics become

∂tε+ . . . = −ε− ε̄

τn
(6.55a)

∂t(P + ε)vi + . . . = −(P + ε)vi

τm
(6.55b)

∂tn+ . . . = −n− n̄

τn
(6.55c)

When linearizing around ε̄ and n̄ (which are the reference equilibrium values),
we immediately recover the one-current analogue of equations (6.32), while
also obtaining the Onsager constraint τε = τn for free, directly from kinetic
theory.

We can again justify the RTA in (6.53) from a microscopic model. The
total collision integral now takes the form

Icoll = Iee + Iimp + Iph (6.56)

We have already discussed the role of Iee, that dominates and forces the
system to be in LTE, and of Iimp, which relaxes momentum via scattering
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with impurities. Provided that our solution is in LTE, these first two collision
integrals vanish in the energy and charge equation. The third term instead is
the collision integral that describes scattering between electrons and phonons.
It is given by [114]

Iph =
�

d3qWp′q→p
[
fp′(1 − fp)nq − fp(1 − fp′)(1 + nq)

]
δ
(
εp − εp′ − ωq

)
+
�

d3qWp′→pq
[
fp′(1 − fp)(1 + nq) − fp(1 − fp′)nq

]
δ
(
εp + ωk − εp′

)
(6.57)

where ωq and nq are respectively the energy and one-particle distribution
functions for the phonons, while Wp′q→p is, as usual, the scattering rate. The
first term represents the case in which a quasi-electron of momentum p emits
a phonon with momentum q and is scattered to a state with momenta p′, and
its inverse process, in which an electron of momentum p′ absorbs the phonon.
In this first case, the momenta obey the conservation equation p = p′ +k+b,
where b accounts for Umklapp processes, and the electron εp is scattered
to lower-energy states. On the other hand, the second term represents the
case in which an electron of momentum p absorbs a phonon of momentum
q, and its inverse process of emission, so that momentum conservation reads
p + k = p′ + b and the electron εp is of lower energy. Notice that the above
collision integral identically vanishes when integrated in momentum space
against the identity, thanks to the fact that electron-phonon scatterings
conserves the electric charge.

Furthermore, the above electron-phonon collision integral also vanishes
when both electrons and phonons are in global thermodynamic equilibrium
[114]. Following [264], we assume that the temperature is high enough so
that the phonons are in a global thermodynamic equilibrium state defined
by T̄ and µ̄

nq = n̄(0) = 1
e(ωq−µ̄)/T̄ − 1

(6.58)

and behave as a thermal bath for the electrons. Having fixed the phonon
distribution, then Iph vanishes only when fp is also in global thermodynamic
equilibrium with the phonons, i.e. only when fp = f̄ (0).

If we now wish to write the electron-phonon collision integral in a RTA
form, this should vanish when fp is equal to the global thermodynamic
equilibrium induced by the phonon bath f̄ (0), and we are thus led to the
second term in (6.53).

6.4.4 Generalized relaxations from RTA

We have shown how to introduce energy and charge relaxation in the sys-
tem, without mixed relaxations, hence it is time to discuss how to include
generalized relaxations from a kinetic theory perspective. In the RTA (6.53),
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the first term is related to momentum relaxation and will not be affected by
this discussion, however we will modify the second term in such a way to
obtain generalized relaxations.

To begin, we simply need to assume that the scattering rate τ is a
function of the momentum or, to be more specific, of the quasiparticle energy
τ = τ(εp), assuming isotropy. From a microscopic perspective, this is believed
to be universally true for most scattering mechanism [114, 319]: the RTA
is a very simple approximation of the true collision integral that tries to
capture the complicated non-linear scattering dynamics in a single constant
parameter τ , however in realistic cases the effective scattering rate does
depend on the energy of the quasiparticles [321, 322] and, as we will see, this
induces generalized relaxations on the equations of hydrodynamics.

Consider the second term in (6.53) due to electron-phonon scattering,
and assume that τn(εp) can be expanded in the generic power-series form

Iph ≈
∑

N≥−2
εN

p

f (0) − f̄ (0)

τN+2
=

= 1
ε2

p

f (0) − f̄ (0)

τ0
+ 1
εp

f (0) − f̄ (0)

τ1
+ f (0) − f̄ (0)

τ2
+ εp

f (0) − f̄ (0)

τ3
+ . . .

(6.59)

The first two terms, with negative powers of εp, are the only ones with N < 0
that lead to finite quantities when integrated in momentum space for the
linear dispersion relation we are considering εp = p. We define with MN+2
the N -th energy-moment of f (0)

MN+2 =
∑
p,h

� d3p
(2π)3 ε

N
p f

(0) (6.60)

such that, in particular, M2 = n and M3 = ε. Then, inserting (6.59) in the
Boltzmann equation, multiplying with the identity and the quasiparticle
energy, and subsequently integrating over momentum space, we obtain the
equations of relaxed hydrodynamic. The expressions for energy and charge
are

∂tε+ . . . = −M1 − M̄1
τ0

− n− n̄

τ1
− ε− ε̄

τ2
− M4 − M̄4

τ3
+ . . . (6.61a)

∂tn+ . . . = −M0 − M̄0
τ0

− M1 − M̄1
τ1

− n− n̄

τ2
− ε− ε̄

τ3
+ . . . (6.61b)

where the dots on the RHS represent higher moments. The MN are thermo-
dynamic functions of µ and T that can be analytically computed, e.g. the
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first few terms for massless relativistic fermions are

M0 = µ

2π2 (6.62a)

M1 = T 2

4π2

(
µ2

T 2 + π2

3

)
(6.62b)

M4 = T 4µ

30π2

(
π2 + µ2

T 2

)(
7π2 + 3µ

2

T 2

)
(6.62c)

while M2 and M3 are given in (6.48). In (6.61), the non-bar quantities are
dynamical functions of µ and T that obey the equations of hydrodynamics,
while the bar quantities are understood as constraints without dynamics.

As they appear now, they do not resemble the generalized relaxations of
Chapter 5. This is because, as we have already discussed (see Chapter 5), the
generalized relaxations added to the equations of linearized hydrodynamics
are agnostic on the full non-linear form of the relaxations. For this reason, if
we want to match the expressions in (6.61) with the relaxations in (5.6), we
must first linearize the equations. Clearly, the equilibrium solution is chosen
so that all the collision integrals, and thus the relaxations terms, vanish.
Consequently, the equilibrium will be given by the zero-velocity state with
ε = ε̄ and n = n̄, to which we add linear fluctuations as ε = ε̄ + δε and
n = n̄+ δn to obtain the linearized equations of hydrodynamics

∂tδε+ . . . = − δε

τεε
− δn

τεn
(6.63a)

∂tδn+ . . . = − δε

τnε
− δn

τnn
(6.63b)

where in writing the above non-conservation equations we defined the usual
macroscopic relaxation times in terms of the microscopic τN of (6.59). For
example, considering the first few terms shown in (6.61), they are

1
τnn

= ∂M0
∂n

1
τ0

+ ∂M1
∂n

1
τ1

+ 1
τ2

+ . . . (6.64a)

1
τnε

= ∂M0
∂ε

1
τ0

+ ∂M1
∂ε

1
τ1

+ 1
τ3

+ . . . (6.64b)

1
τεn

= ∂M1
∂n

1
τ0

+ 1
τ1

+ ∂M4
∂n

1
τ3

+ . . . (6.64c)

1
τεε

= ∂M1
∂ε

1
τ0

+ 1
τ2

+ ∂M4
∂ε

1
τ3

+ . . . (6.64d)

where again the dots represent terms associated with larger powers of εp in
(6.61). These final expressions are reminiscent of Matthiessen rule, with the
difference that the microscopic times τN can be understood as different energy
scaling of the same scattering process and are weighted by thermodynamic
functions.
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We can now check that Onsager relations, i.e. the constraint (5.10)
χεε

τnε
− χεn

τεε
+ χnε

τnn
− χnn

τεn
= 0 (6.65)

is solved identically by the expressions (6.64), upon using thermodynamic
identities. Although time-reversal covariance is a property that emerges from
our kinetic theory approach, we find the same is not true for the second law of
thermodynamics (5.15), which fails in general, as we argued in Section 6.3.2
for the case with two currents. The reason is clear from our kinetic theory
model: we introduced generalized relaxations as interactions with a bath
(in our case, of phonons), thus we are describing a weakly open system that
must not obey positivity of entropy production.

The above computation shows that Onsager-reciprocal generalized relax-
ations can be obtained from a microscopic model, starting from a simple
energy-dependent RTA ansatz which can be understood as interaction with a
bath in equilibrium. Therefore, generalized relaxations are actually a rather
universal feature, and we can expect them to appear in many different cases,
since they only require the scattering rate to depend on the quasiparticle
energy.

Some comments we think are necessary. First, although the results above
are obtained for a linear dispersion relation and for an analytic function τ(εp)
only, we can expect the same conclusions to hold even for more exotic models,
at the cost of giving up analytic control over some of the computations.

Furthermore, it is clear from the expressions in (6.61) and (6.64) that each
separate microscopic scattering time τN leads to generalized relaxations which
satisfy Onsager relations. What this means is that if a specific microscopic
model suggests that only one or two τN in the expansion (6.59) are relevant,
the a-priori unrelated four macroscopic generalized relaxations will depend
only on these relevant microscopic times, reducing the number of independent
parameters. These relations cannot be detected by means of hydrodynamics
and require a fully microscopic approach to derive them.

We can also consider the effect of energy dependence on the momentum
RTA term in (6.53). What happens in this case is that we find new thermody-
namics functions that multiply the velocity, however when linearizing around
v = 0 we can always write the momentum relaxation term as (P + ε)/τm,
by appropriately redefining τm to absorb thermodynamic factors. Thus, an
energy-dependent relaxation time in the first term of (6.53) does not alter
the momentum (non-)conservation equation, it simply changes the effective
value of τm.

Finally, we comment on the issue of charge conservation. From a micro-
scopic point of view the electron-phonon collision integral (6.57) conserves the
total electric charge, even if it relaxes energy and momentum. This property,
however, is not shared by the RTA we wrote in (6.53) and its subsequent
generalization in (6.59), that do not conserve charge. Collision integrals are
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complicated functionals, therefore solving exactly the Boltzmann equation
is very hard, hence to make progress we often exchange the true collision
integral for a simpler model. Any such approximation will generally lose
certain properties of the scattering process, while trying to preserve other
ones, in the hope that the approximation is good enough to describe the dy-
namics one is interested in [319]. From this point of view, it is clear that the
RTA is the simplest approximation, in which all the complicated scattering
process is captured by a single function τ(εp): the only property it preserves
is that the collision integral vanishes when the distribution function reaches
equilibrium fp = f̄ (0), however it gives up on other important properties,
such as charge conservation. Nonetheless, we can impose that electric charge
is conserved using generalized relaxations and their dependence on a set of
common microscopic times τN , namely we require that

∂tn+ · · · =
� d3p

(2π)3
f (0) − f̄ (0)

τ(εp) =
∑

N≥−2

� d3p

(2π)3 ε
N
p

f (0) − f̄ (0)

τN

?= 0 (6.66)

This might not always be possible, e.g. if the only relevant terms in the
expansion of τ(εp) in (6.59) are τ2 and τ3, then we find that τnn = τ2
and τnε = τ3, thus enforcing charge conservation amounts to requiring
τ−1

2 = τ−1
3 = 0, washing away any energy relaxation too. However, if

more or different τN are relevant, we can in general expect to be able to
solve τ−1

nn = τ−1
nε = 0 in terms of the microscopic times τN , thus obtaining

charge conservation as desired. It is not clear at the moment whether these
conditions would necessarily arise from a microscopic calculation, or should
be regarded as a computational trick to fine-tune charge conservation.

6.4.5 Two-currents model

We can generalize the results of the previous sections to the case of interest for
Weyl semimetals, namely a fluid with two species of particles that thermalize
together. To proceed, we consider two distinct distribution functions fp,λ

with λ = ± denoting the chirality of each species of particles, located around
its corresponding Weyl cone [315, 323]. Then, in the absence of impurities
and phonons, the two coupled Boltzmann equations take the standard form
[114, 263, 324, 325]

∂tf⃗p + p · ∇f⃗p = Iee[f⃗p] =
(
I++[fp,+] + I+−[fp,λ]
I−+[fp,λ] + I−−[fp,−]

)
(6.67)

where f⃗p = (fp,+, fp,−)T . Exactly like in the one-current case, it can
be shown that the electron-electron collision integral vanishes when the
distribution functions are in LTE. In particular, because of the off-diagonal
interaction terms between particles of different chirality I±∓ ̸= 0, the two
species can exchange energy and momentum, thus only the total energy and
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momentum are conserved, while the chiral charges are separately conserved
(not considering the anomaly) [324, 325]. Consequently, they thermalize to
LTE distribution functions defined at same temperature T and velocity u,
but at different chemical potentials µλ = µ+ λµ5

fp,λ = 1
1 + e(εp−u·p−µλ)/T

. (6.68)

From here, we again linearize at small velocity

fp,λ ≈ f
(0)
λ − (p · u)∂f

(0)
λ

∂εp
with f

(0)
λ = 1

1 + e(εp−µλ)/T
(6.69)

which allows us to decouple charge and momentum relaxations in a block
diagonal form. Finally, we can compute the thermodynamic quantities
(energy, electric and axial charge) in LTE for a linear dispersion relation
εp = p that describes Type I Weyl semimetals [314]

ε =
∑

λ

∑
p,h

� d3p
(2π)3 εpfp,λ = 7π2T 4

60 + T 2 (µ2 + µ2
5
)

2 + µ4 + 6µ2µ2
5 + µ4

5
4π2 ,

(6.70a)

n =
∑

λ

∑
p,h

� d3p
(2π)3 fp,λ = µ

(
π2T 2 + µ2 + 3µ2

5
)

3π2 , (6.70b)

n5 =
∑

λ

λ
∑
p,h

� d3p
(2π)3 fp,λ = µ5

(
π2T 2 + 3µ2 + µ2

5
)

3π2 . (6.70c)

where the first sum is over the two chiralities (notice that n5 is computed
weighting with λ), and the second one on particles and holes contributions.
These thermodynamic quantities obey the Euler relation

P + ε = sT + nµ+ n5µ5 (6.71)

where P = ε/3 and s = ∂P/∂T .
To include momentum relaxation we can proceed exactly as before: we

add an elastic electron-impurity collision integral that preserves chirality,
which takes the usual form (6.52) for each species λ. Then, we arrive at the
same RTA as in (6.49), one for each chirality, and computing the momentum
equation we obtain the momentum-relaxation term as desired.

Regarding the relaxations of the other charges, however, there are different
choices we can make to write the RTA, as we discuss now.

Intra-valley scattering

Consider the simplest RTA that relaxes the charges, while not mixing the
chirality, namely

Iph ≈ −
f

(0)
λ − f̄

(0)
λ

τ
, (6.72)
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where, as before, the bar stands for the global thermodynamic equilibrium
distribution function. This collision integral relaxes all the charges at the
same rate τε = τn = τn5 , which is indeed the correct solution to the On-
sager constraints (6.35) without off-diagonal relaxations, as discussed in
Section 6.3.2.

Following the one-current case, we consider the effect of an energy-
dependent relaxation rate τ = τ(εp): expanding as in (6.59), computing the
equations of hydrodynamics, and linearizing around an equilibrium with
ε = ε̄, n = n̄ and n5 = n̄5, we arrive at the generalized relaxations of (6.34).
The resulting macroscopic decay rates, written in terms of the microscopic
times τN as in (6.64), identically satisfy Onsager relations (6.35).

From a physical perspective, this collision integral mimics intra-valley
scatterings, i.e. quasi-electrons that interact only within each Weyl node
and do not change chirality. The microscopic justification of this RTA comes
again from electron-phonon collisions, in which we assume that phonons
in equilibrium near each cone do not carry chirality and the electrons are
scattered back in their node of origin.

Inter-valley scattering

We can also consider more generic collision integrals in the presence of multiple
species, in particular we can analyse the effect of inter-valley scatterings
mediated by impurities.

Inter-valley scatterings are usually implemented as out of equilibrium pro-
cesses (not in the ideal-fluid hydrodynamic regime we are in) by subtracting
to fp its angular average [315, 326]. This cannot be done in our present case,
since the distribution functions f (0)

λ are isotropic, nonetheless we can write
an RTA form that represents inter-valley scatterings by including distribution
functions with different chirality. Namely, we can write

Iimp,λ ≈ −
f

(0)
λ − f

(0)
−λ

2τ (6.73)

Notice that we are subtracting to f (0)
λ the dynamical distribution function

f
(0)
−λ associated to the other chirality, instead of the fixed equilibrium value
f̄

(0)
−λ .

The above collision integral, when τ is constant, vanishes in the energy,
momentum and electric charge equation, however it appears in the axial one
and its form is such that it relaxes the axial charge to zero. More specifically,
it takes the following integrated form in the axial charge equation

∂tn5 + · · · = −n5
τ

(6.74)

so that in the decay term only n5 appears, instead of the difference n5 − n̄5.
Thus, as already apparent from (6.73), we see that this kind of collision

148



Chapter 6. Anomalous hydrodynamics and Weyl semimetals

integral tries to completely destroy any imbalance between the left- and
right-handed distribution functions, driving the axial charge density to zero.

Naively, this collision integral seems to not satisfy Onsager relations:
indeed, Onsager constraints (6.35) indicate that if τn5n5 is non-zero, then we
must also relax energy and charge at the same rate (we are not considering
off-diagonal relaxations yet), see Section 6.3.2. However, this does not happen
from (6.73), since it only enters the axial charge equation.

The solution to this problem comes from the observation that we should
always linearize on the equilibrium solution that sets to zero all the collision
integrals. It is then clear that RTA above (6.73) forces the chemical potentials
of the two chiralities to be equal, thus the equilibrium solution is given by
µ5 = n5 = 0, instead of n5 = n̄5. This means we should check Onsager
relations on this equilibrium at zero axial chemical potential too. Doing so
we find that Onsager relations are indeed obeyed and time-reversal invariance
is identically preserved even in this case.

As usual, we can consider a generic energy dependence of the relaxation
time to induce generalized relaxations. With τ = τ(εp) the inter-valley
collision integral (6.73) still vanishes in the energy, charge and momentum
equation, however now it induces non-zero generalized relaxations in the
axial charge equation τn5ε ̸= 0 ̸= τn5n. Again, when computed in equilibrium
with µ5 = n5 = 0, these relaxations identically satisfy the constraints coming
from Onsager relations (6.35).

To justify the collision integral (6.73) from a microscopic perspective we
can follow [16] and consider an impurity-mediated inter-valley scattering
event of the form

Iimp,λ =
�

d3p′Wp→p′ [fp,λ − fp′,−λ]δ(εp − εp′) . (6.75)

that mixes the two chiralities. Then, the RTA model of this collision integral
not only will set the velocity of the fluid to zero (contributing to momentum
relaxation), but will also drive the chiral distribution functions to be equal,
by depleting µ5 to zero, leading us to (6.73) as desired.

Finally, we see that, exactly like in the single-current case, the intra-
valley RTA model (6.72) does not conserve charge in general. The same
arguments we used before are valid now too: this is not a property of the
full collision integral (we expect electron-phonon scattering to be unitary),
but rather a spurious effect specific to the RTA model. Nonetheless, we can
enforce charge conservation on the system by requiring that the effective
charge-relaxation rates, written in terms of the microscopic times τN , vanish
τ−1

nε = τ−1
nn5 = τ−1

nn = 0.
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6.4.6 Modified RTA: charge conservation

We have already discussed how the standard RTA and its energy-dependent
generalization (6.59) violate charge conservation at the linear order in fluc-
tuations (6.61). We also argued that it is possible to solve this problem
by enforcing charge conservation at the level of the microscopic τN , which
however requires some fine-tuning between the parameters. To conclude this
chapter, we want to address whether it is possible to find suitable modifica-
tions of the RTA model that preserve charge conservation identically, while
not spoiling Onsager relations or fine-tuning the relaxation rates. We find
that in general this is possible, by employing a generalization of the so-called
BGK model [93, 319, 327]. As we discussed in Section 6.4.1, the standard
RTA (6.45) induces the Landau frame on the hydrodynamic constitutive
relations by ruining the conservation of the charges, for this reason in [93]
the BGK model (which conserves the charges identically) was used to obtain
the hydrodynamic constitutive relations in a generic frame. To be more
concrete, we will consider a model with a single conserved current, which can
be straightforwardly generalized to models with multiple conserved currents.

First, we review the standard BGK model, before generalizing it for our
needs. Consider the electron-electron collision integral in (6.39): it vanishes
identically in LTE fp = f eq

p , thus to compute the hydrodynamic equations
we can linearize around the LTE solution as

fp = f eq
p + δfp = f eq

p (1 + hp) (6.76)

where we introduced the auxiliary function hp. With respect to hp, the
linearized collision integral Iee takes the form [319]

Iee[fp] ≃ Leehp =�
d3p2 d3p′

1 d3p′
2Wpp′→p′

1p′
2
f eq

p f eq
p′

1

(
hp + hp2 − hp′

1
− hp′

2

)
(6.77)

The linearized collision integral Lee inherits many properties from the full
non-linear integral. In particular, because Iee conserve energy, charge and
momentum, it vanishes when integrated in momentum space over conserved
charges (6.43). Thus, the linearized operator has three eigenfunctions with
vanishing eigenvalue (zero modes)

Lee1 = 0 Leep = 0 Leeεp = 0 (6.78a)

which correspond to the conservation of charge, momentum and energy
respectively. Furthermore, like in (6.43), it vanishes when integrated in
momentum against conserved quantities, irrespective of the distribution
function hp�

d3p Leehp = 0
�

d3p pLeehp = 0
�

d3p εpLeehp = 0 (6.78b)
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From a more formal perspective, Lee acts as a linear operator on the
Hilbert space spanned by the real functions hp. The inner product is defined
as

(h, g) = ⟨hg⟩ =
�

d3p f eq
p hpgp (6.78c)

such that Lee is self-adjoint and negative semi-definite

(g, Leeh) = (Leeg, h) and (h, Leeh) ≤ 0 (6.78d)

In particular, the last inequality is saturated only when h is a collision
invariant, i.e. Leeh = 0 for conserved quantities.

From this point of view, it is clear that the RTA approximation (6.45),
described by the operator LRTA

Leehp ≈ LRTAhp = −f eq
p
hp
τ

(6.79)

is proportional to the identity operator in the Hilbert space LRTA ∼ −1.
Notice that it does not have all the properties of the original linearized oper-
ator Lee, specifically it does not vanish when integrated in momentum space
against conserved quantities, which led to the Landau matching conditions
in (6.46).

We can approximate Lee with an improved RTA model, by projecting
away the states related to the conserved charges. We write

Leehp ≈ LBGKhp = f eq
p
τ

(
−hp +

5∑
n=1

ψa
p(ψa, h)

)
(6.80)

where the ψa
p are the orthonormal zero modes of Lee(

ψa, ψb
)

= δab (6.81)

and they are in one-to-one correspondence with collision invariants. It is
then possible to check that the BGK model satisfies all the properties listed
above for the complete linear collision integral (6.78), while also rendering
the Boltzmann equation more manageable [319].

We would now like to apply the same construction to the electron-phonon
collision integral in ideal hydrodynamics. We expect that the linearized
scattering should conserve charge, while relaxing energy and momentum. In
this case, the function h is defined by linearizing around the global equilibrium
state

f (0) = f̄ (0)(1 + h) (6.82)

where we have f (0) instead of fp on the LHS, because we already know
that this allows us to decouple the RTA into separate relaxations for the
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momentum and the charges (6.53). Furthermore, in the present context, the
angled brackets refer to the integral in the Hilbert space against f̄ (0)

⟨g⟩0 =
�

d3p f̄ (0)gp (6.83)

Because we are interested in charge conservation, we should naively project
away only the normalized state associated with charge density, i.e. ψ1 =
1/
√

⟨1⟩0 = 1/
√
n̄ where n̄ is the global thermodynamic equilibrium charge

density. From (6.80) we then find that

Lphh ≈ LBGKh = f̄ (0)

τ
(−h+ ψ⟨ψh⟩0)

= f̄ (0)

τ

(
n

n̄
− 1

)
− f (0) − f̄ (0)

τ
(6.84a)

To obtain the equations of hydrodynamics we proceed in the usual way, by
multiplying with the identity and the quasiparticle energy and integrating
over momentum the Boltzmann equation. We find that charge is indeed
conserved, as desired, while the energy relaxes as

∂tε+ · · · =
�

d3p εpLBKGh = ε̄

n̄

n− n̄

τ
− ε− ε̄

τ
(6.85)

We see that the above decay term vanishes in equilibrium defined by n = n̄
and ε = ε̄. Then, fluctuating around this background, we can check Onsager
relations (6.35) following the steps of the previous sections. Interestingly,
however, this procedure now fails: the generalized relaxations obtained from
the above energy equation do not obey Onsager relations.

To understand this problem, remember that we should always fluctuate
around a background that sets to zero all the collision integral. Although
the solution n = n̄ and ε = ε̄ sets to zero the energy relaxation term, there is
also a second spurious solution given by n arbitrary and ε = nε̄/n̄. Indeed,
if we compute the susceptibilities on this equilibrium and subsequently check
Onsager relations for the relaxation found in (6.85), we find that time-reversal
holds identically, as expected.

Even if the above approach works, indeed charge is conserved and Onsager
relations are obeyed, the result is unsatisfactory. We would like to obtain
the same results, but for an equilibrium background in which the energy is
not constrained to be proportional to the charge. To do so we must further
modify the BGK model, as we will now see. Consider a modified BGK
operator of the form

L∗ = − f̄ (0)

τ

∑
i,j

ai,jψ
iψ̃j = − f̄ (0)

τ

1 +
∑
i,j

(ai,j − δij)ψiψ̃j

 (6.86)
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where ψ̃a is a linear functional of the ψ (a bra in Dirac notation, dual to ψa)
defined by

(
ψa, ψb

)
= ψ̃a(ψb), and ai,j is a matrix of momentum-independent

coefficients. The above L∗ means that we are assuming that the full linear
collision integral Lph and its RTA form cannot be made diagonal on the
same basis, thus we had to introduce extra coefficients ai,j which tell us how
the basis vectors transform.

If we want L∗ to preserve charge identically, exactly like Lph does, then
we must enforce that

(
ψ1, L∗h

)
= 0 for any function h, where ψ1 is the

charge zero mode of Lph. To do so, we require a1,i = 0 on the a-matrix of
coefficients. Notice, however,that we might have ai,1 ̸= 0 in general, while
also having the other entries non-zero. This implies that ψ1 is not a zero
mode of L∗, hence the phase-space charge density is not conserved. We can
understand it as an indication that a system described by L∗ is weakly open,
and this is further supported by the fact that L∗ may not have any other
property of the standard linearized collision integral, such as Hermiticity or
negative semi-definiteness. This perspective suggests that it might violate
the second law of thermodynamics and not conserve any other charge, except
for the electric one.

In the hydrodynamic regime we are only interested in the first moments
of the conserved quantities, thus we restrict ourselves to ai,j>5 = ai>5,j =
0, and denote with i, j = 1, 2, 3, 4, 5 the modes related to charge, energy
and momentum conservation. Subsequently, we can decouple momentum
relaxation from charge and energy, as we did in (6.53), by assuming that ai,j

takes a block-diagonal form, so that we can ignore momentum relaxation
from now on and focus on charge and energy relaxations. With this in mind,
ai,j is now a 2 × 2 matrix

ai,j =
(

0 0
α2 a1

)
⇒ αi,j ≡ ai,j − δij =

(
−1 0
α2 α1

)
(6.87)

that, when expanded, leads to the following linearized collision integral

L∗ = − f̄ (0)

τ

∑
i,j

(
α2ψ

2ψ̃1 + a1ψ
2ψ̃2

)
=

= − f̄ (0)

τ

[
1 − ψ1ψ̃1 + α2ψ

2ψ̃1 + α1ψ
2ψ̃2

]
(6.88)

In particular, for α2 = 0 and α1 = −1 we recover the standard diagonal ex-
pression used for the BGK model of electron-electron scatterings (modulo the
momentum terms) [93, 319]. The new coefficients α1, α2 are phenomenologi-
cal parameters used to identically enforce charge conservation and Onsager
relations on the background we desire, by tuning their values appropriately.
We can show how this works explicitly: for our purpose, we only need the
modes ψ1 and ψ2, associated with charge and energy respectively, which take
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the form
ψ1 = 1√

n̄
ψ2 = ε̄− n̄εp√

n̄2ε̄2 − ε̄2n̄
(6.89)

Subsequently, using the expression for L∗ (6.88) in the Boltzmann equation,
together with the above values for the modes ψi (6.89), we arrive at

∂tf
(0)+· · · = −1

τ

[
f (0) − n

n̄
f̄ (0) + α̃2f̄

(0)(n− n̄) + α̃1f̄
(0)(ε̄n− n̄ε)

]
(6.90a)

where
α̃1 = α1

ε̄− n̄εp

n̄2ε̄2 − ε̄2n̄
α̃2 = α2

ε̄− n̄εp√
n̄3ε̄2 − ε̄2n̄2

(6.90b)

Notice that, contrary to α1 and α2, we defined α̃1 and α̃2 to be functions
of momenta, so we will need to integrate them to compute the equations
of hydrodynamics. From here, we can already see that the RHS vanishes
identically when f (0) = f̄ (0), i.e. n = n̄ and ε = ε̄, as desired.

We can compute the hydrodynamic (non-)conservation equations from
the Boltzmann equation above. As expected, integrating over momentum
we see that electric charge is identically conserved (thanks to the fact that
⟨α̃1⟩0 = ⟨α̃2⟩0 = 0), while the energy equation becomes

∂tε+· · · = −ε− ε̄

τ
+ ε̄

n̄

n− n̄

τ
− α2(ε̄2 − n̄ε̄2)√

n̄3ε̄2 − ε̄2n̄2

n− n̄

τ
+−α1(ε̄2 − n̄ε̄2)

n̄2ε̄2 − n̄ε̄2
ε̄n− n̄ε

τ

(6.91)
Proceeding in the usual way, we linearize around the global equilibrium
background defined by n = n̄, ε = ε̄ and read off the generalized relaxations
τεn and τεε in terms of the microscopic time τ . The effective relaxations
depend either on α1 or α2, hence when we impose Onsager relations we can
tune the parameters to ensure that time-reversal is preserved.

In conclusion, we showed that by considering a suitable modification of
the BGK model we can obtain generalized relaxations from kinetic theory
that identically obey Onsager relations and preserve charge conservation.
These relaxations do not satisfy the second law of thermodynamics, in general,
and depend on two phenomenological parameters.

6.5 Summary, discussion and outlook
In this chapter we studied the longitudinal thermoelectric magnetotransport
of anomalous fluids, with a particular focus on the physics of Weyl semimetals.
First, we pointed out a mistake present in previous models [16, 260], in which
the anomalous conductivities were computed using order-one hydrodynamics
with an order-one magnetic field. We showed that this approach leads to
conductivities which are not anomalous: the magnetic-field dependent part
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appears only at order two in derivatives (6.17), thus it should be discarded in
order-one hydrodynamics, since it is not physical. Indeed, this is confirmed
by the fact that different hydrodynamic frames correspond to different results
for the longitudinal magnetotransport, which should not happen. To properly
study the longitudinal anomalous conductivities we suggest using a magnetic
field that is order zero in derivatives B ∼ O(1), such that it enters the
thermodynamics.

Subsequently, we used ideal hydrodynamics with an order-zero magnetic
field to study the DC transport of anomalous fluids. In agreement with
previous works [16, 257, 260], we found that in general energy, momentum
and axial charge have to relax (all of which can be argued based on micro-
scopic mechanisms) in order for the system to have finite DC conductivities.
However, we showed that naive realizations of these relaxations lead to
unphysical constraints between the relaxation rates when Onsager relations
are taken into account. Thus, following phenomenological considerations, we
set the goal to look for a system that obeys fundamental constraints: finite
DC conductivity, microscopic time-reversal covariance (Onsager relations)
and electric charge conservation. What we found is that by using the gener-
alized relaxations introduced in Chapter 5 we could write a model with these
properties, however entropy is not conserved in the system, implying that
it is open. Moreover, our model gives new qualitative predictions for the
thermoelectric transport of anomalous fluid, which could be used to probe
the hydrodynamic regime of Weyl semimetals.

Finally, we discussed how to obtain generalized relaxations from kinetic
theory. We found that this can be achieved by introducing a fixed reference
distribution function f̄ (0) in an appropriate energy-dependent generalization
of the RTA (6.59). This linearized collision integral can be argued from
microscopic considerations regarding electron-phonon scatterings, and we can
also modify it to identically conserve charge, as in Section 6.4.6. Remarkably,
the generalized relaxations obtained from kinetic theory identically obey
Onsager relations.

There are many interesting avenues that stem from our kinetic theory
computation. In this chapter we focused our attention on relaxation rates
with a simple power-law dependence (6.59), while also restricting ourselves
to a linear dispersion relation εp = p (relevant for Weyl semimetals), however
our result seems to be more general and could apply also to non-analytic
relaxation rates τ(εp) and different dispersion relation. Also, it would be
interesting to check whether it is possible to modify the inter-valley RTA (6.73)
in order to describe system with finite axial charge density in equilibrium
µ5 ̸= 0 ̸= n5. To conclude, it would be fascinating to understand if the
coefficients α1 and α2 introduced in Section 6.4.6, used to impose Onsager
relations and charge conservation on the system via kinetic theory, can be
constrained from microscopic fundamental principles or linear stability.
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Chapter 7
Conclusions

“No one should be discouraged, Theaetetus, who can make
constant progress, even though it be slow.”

Plato, Sophist

7.1 Summary of main results
In this thesis we analysed various aspects of relaxed hydrodynamics, broadly
defined, with a specific focus on the transport properties in the linearized
regime.

To begin, in Chapter 3 we studied a strongly-coupled electronic fluid
in which spatial translations are broken by the presence of Charge Density
Waves, a situation that often arises in cuprates. Hydrodynamics is then
modified to account not only for the dynamics of conserved charges, but also
of the (pseudo-)Goldstone bosons that appear due to the symmetry breaking.
We considered two cases: one where translations are broken spontaneously,
leading to the Goldstone fields remaining massless, and another where trans-
lations are broken pseudo-spontaneously. In the latter case, a small external
source that explicitly breaks translations is turned on.

We constructed the hydrodynamic theory for such system, and analysed
the transport properties focusing on a new regime in which both the lattice
pressure Pl and a strong external magnetic field B ∼ O(1) are present. The
former, in particular, is a new transport coefficient related to crystal fields,
and must vanish in thermal equilibrium. Nonetheless, it is obtained naturally
from holography in Q-lattice models, which describe metastable phases, and
is therefore needed in the hydrodynamic description to correctly match the
holographic correlators.

We studied the optical thermoelectric conductivities using hydrodynam-
ics in linear response, obtaining analytic expressions which are functions of
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thermodynamic parameters, the DC values of certain non-universal conduc-
tivities, and, in the pseudo-spontaneous case, of the pinning frequency ω0.
We obtained the values of the non-universal DC correlators from a specific
Q-lattice holographic model in terms of horizon data, and for the same model
we also computed the conductivities numerically.

We found a very good agreement between our analytic hydrodynamic
correlators and the holographic ones over a large range of values of the
parameters. Furthermore, we obtain a relation that expresses the Goldstone
relaxation rate ΩIJ in terms of the pinning frequency ω0, confirming a result
previously obtained in other works.

Next, in Chapter 4 we considered a hydrodynamic model that is analogue
to the Drude model for a weakly-interacting gas. Specifically, we studied
a charged fluid driven by an external strong electric field and that loses
momentum and energy to impurities, which act as effective energy and
momentum sinks for the system.

The presence of a momentum relaxation term in the (non-)conservation
equations of hydrodynamics implies that boosts are broken in the theory,
therefore we employ a boost-agnostic formalism in which the velocity is an
integral part of the thermodynamics. In analogy to the Drude model, we
focus on time-independent stationary states, and we use the hydrostatic
generating functional to compute the constitutive relations up to order one in
derivatives. Checking the consistency of the hydrodynamic equations order
by order we infer that one of the hydrostatic constraints must be modified
in the presence of relaxations. In particular, without momentum decay the
difference between the electric field and the gradient of the chemical potential
is zero on stationary flows, while the velocity is constant but unconstrained.
However, we found that when momentum relaxation is present, the velocity
of the fluid is fixed by the decay rate and the external driving force (the
electric field), in agreement with phenomenological expectations.

Finally, we also found a kinematic constraint that momentum and en-
ergy relaxations must obey for the fluid not to produce entropy at order
zero in derivatives. Furthermore, our theory gives new predictions for the
thermoelectric transport of charged fluids in the presence of momentum
relaxations.

Subsequently, in Chapter 5 we introduced the idea of generalized relax-
ations. Namely, we included in the linearized equations of hydrodynamics
the most general relaxation terms proportional to the fluctuations of the con-
served charges of the system. We obtained a set of very general constraints
that the decay rates must obey in such systems, based on the requirement of
microscopic time-reversal invariance (Onsager relations), positivity of entropy
production, and linear stability.

However, because relaxation terms in general spoil the symmetries of
the system, such as Lorentz and gauge invariance, it is not obvious how to
couple quasihydrodynamic theories to curved spacetime and gauge fields to
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compute correlators using the variational approach. To amend the problem
we included in the linearized equations of hydrodynamics all the possible
source terms, each with its own free coefficient. What we found is that
the simple requirement of time-reversal invariance of the microscopic theory
uniquely fixes the values of all these extra parameters, giving access to the
full set of Onsager-reciprocal correlators.

To conclude, in Chapter 6 we studied models of anomalous hydrody-
namics. First, we analysed the longitudinal transport in the presence of a
background order-one magnetic field B ∼ O(∂), and we found that order-one
hydrodynamics cannot capture the anomalous response of the fluid. This is
because the magnetic-field corrections to the conductivities enter at order
two in derivatives, while the hydrodynamic theory is order one. Indeed, this
is confirmed by an explicit computation in a generic hydrodynamic frame,
which shows that the result is frame dependent and therefore not physical. To
solve this issue we argued that the best approach is to promote the magnetic
field to be order zero in derivatives B ∼ O(1), so that the background and
conductivities are now frame independent.

Later, we analysed the DC transport of Weyl semimetals in the hydrody-
namic regime. To obtain finite DC conductivities energy, momentum and
axial charge must relax to equilibrium, however previous relaxation models
failed to capture all the phenomenological and fundamental constraints that
we expect in real systems. Our approach is based on generalized relaxations,
and we showed that they are necessary if we want our system to have finite
DC conductivities, obey Onsager relations, and conserve the electric charge.
Furthermore, our model leads to new predictions for the thermoelectric
transport, paving the road to experimental verifications of the hydrodynamic
regime.

Finally, we also discussed how to derive generalized relaxations in hydro-
dynamics from kinetic theory. We found that we could introduce relaxations
in the equations of hydrodynamics by considering RTA collision integrals
that relax to fixed reference distribution functions. By allowing the RTA
parameters to depend on the quasiparticle energy τ = τ(εp) we obtained gen-
eralized relaxations from kinetic theory which identically obey the constraints
imposed by Onsager relations. However, because the standard RTA does
not conserve electric charge, we also suggested an improved version of the
linearized collision integral which identically conserves charge and depends
on two free parameters, which can be tuned to satisfy Onsager relations. Our
results are very general, and apply to non-anomalous fluids too.

7.2 Outlook and future avenues

One interesting question that arises from this work is whether it is possible
to recast the quasihydrodynamic models we analysed on a more formal
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ground. On this regard, there are many different approaches that we could
try. First, it would be interesting to develop a framework along the lines of
the Maxwell-Cattaneo model of [100], in which relaxation terms could be
introduced in the theory by including an explicit fixed vector vµ that enters
the thermodynamics

dε = T ds+ µ dn+ χv

2 dv2 (7.1)

and that we can align with the background clock-form. Another related
approach, based on geometry, is to introduce extra degrees of freedom like
the vµ above, and to modify diffeomorphisms so that the equations of motion
naturally include relaxation terms [257]. Finally, we could also employ a
Schwinger-Keldysh formalism to include extra non-dynamical fields that
break the relevant symmetries [49, 100].

On a parallel route, the topics covered in Chapter 4 have potential
applications to active matter systems. These have gained a lot of attention
in recent years, due to their widespread presence in biophysics and ecology
on one side, but also for their peculiar phenomenology and theoretical
challenges. Active matter is characterized by the ability of its microscopic
constituents to produce energy. Consequently, it describes intrinsically out-
of-equilibrium phases with both microscopic and macroscopic dynamics
significantly distinct from those observed in passive fluids. In [18] the authors
developed a macroscopic theory of transport for such systems, based on
phenomenological considerations, which takes the form

∂tv + λ1 (v · ∇) v + λ2 (∇ · v) v + λ3∇|v|2 + ∇P

−DB∇ (∇ · v) −DT ∇2v −D2 (v · ∇)2 v = αv − β|v|2v + f (7.2a)
∂tρ+ ∇ · (vρ) = 0 (7.2b)

P = P (ρ) =
∞∑

n=1
σn (ρ− ρ0)n (7.2c)

These correspond respectively to the momentum equation of motion, particle
number conservation and the equation of state. From a hydrodynamic
perspective active matter systems do not have any boost symmetry, because
they move with respect to some fixed background medium, and do not
conserve momentum. Indeed, the LHS of (7.2a) generalizes Navier-Stokes
for fluids without boost symmetry, while the RHS contains relaxation and
noise terms which parametrize the non-conservation of momentum. Then, it
would be interesting to apply the boost-agnostic hydrodynamic formalism
of Chapter 4 to derive the LHS of (7.2a) from a more rigorous approach, in
order to check if terms are missing and if we can constrain the values of the
free parameters λi and Di.
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Appendix A
Integrals for kinetic theory

In this Appendix we report some useful integrals [314], which we used to
compute the thermodynamic quantities and the hydrodynamic equations that
appear in Section 6.4. Mathematica correctly evaluates all these integrals.

Considering a linear dispersion relation εp = p, relevant for Weyl semimet-
als, when integrating over momentum space we often encounter the integrals

� d3p
(2π)3 p

n−2f (0) = −Tn+1Γ(n+ 1)
2π2 Lin+1

(
−eµ/T

)
for n ≥ 0 (A.1a)

� d3p
(2π)3 p

n−2∂f
(0)

∂εp
= TnΓ(n+ 1)

2π2 Lin
(
−eµ/T

)
for n ≥ 0 (A.1b)

where f (0) is the Fermi-Dirac distribution function at zero velocity (6.47),
Γ(n+ 1) is the Euler gamma function, while Lin(x) stands for the polyloga-
rithm function.

When we compute thermodynamic quantities, we also need to sum over
particles and holes contributions (6.70). We can use the following expressions
to simplify the results

Li0 (−ex) + Li0
(
−e−x) = −1 (A.2a)

Li1 (−ex) − Li1
(
−e−x) = −x (A.2b)

Li2 (−ex) + Li2
(
−e−x) = −1

2

(
x2 + π2

3

)
(A.2c)

Li3 (−ex) − Li3
(
−e−x) = −x

6
(
x2 + π2

)
(A.2d)

Li4 (−ex) + Li4
(
−e−x) = − 1

4!

(
x4 + 2π2x2 + 7π4

15

)
(A.2e)

which can all be computed from the relation between the polylogarithm
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function for n ≥ 0 and Bernoulli polynomials Bn(x)

Lin
(
−e2πix

)
+ (−1)nLin

(
−e−2πix

)
= −(2πi)n

n! Bn(x) (A.3)

Finally, we report here integrals over angular coordinates.
� d3p

(2π)3 pf(p) = 0 (A.4a)
� d3p

(2π)3 p (p · u) f(p) = u

3

� d3p
(2π)3 p

2f(p) (A.4b)
� d3p

(2π)3 p (p · u) (p · w) f(p) = 0 (A.4c)

where u and w are generic vectors. These integrals are the reason why we
can decouple the momentum equation from the energy and charge equations
once we expand the distribution function at small velocity as in (6.47).
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Appendix B
Aspects of Symmetry

From the Nielsen-Ninomiya theorem [280, 281, 286] we know that the net
chirality in each Brillouin zone must be zero

∑
i λi = 0. Thus, we focus

on the simplest case with one left- and one right-handed Weyl cone, that
behave as sources for the chirality (they are monopoles of Berry curvature in
momentum space).

Consider a chiral system with independent U(1) symmetry for fermions
of different chirality, which implies conserved currents at the classical level.
We can trade the U(1)L × U(1)R currents in favour of a vector and axial
description U(1)V × U(1)A as in (6.25). Then, in the presence of external
electromagnetic and pseudo-electromagnetic fields, the currents become
anomalous and cannot be made both conserved (this is the true statement of
the mixed ’t Hooft anomaly). Since we would like to interpret the vectorial
current as an electric current in QED (i.e. ∂µF

µν = Jν for dynamical gauge
fields), we add counterterms in the action such that the anomaly only sits in
the axial current. This is the form of the so-called consistent anomaly [271,
309]

∂µJ
µ
cons = 0 ∂µJ

µ
5, cons = − c

24ε
µνρσ

(
3FµνFρσ + F 5

µνF
5
ρσ

)
(B.1)

where the anomaly coefficient is c = 1
2π2 for a single fermion family. From

the diffeomorphism invariance of the generating functional for the connected
correlators W = −i lnZ (in the absence of gravitational anomalies), we
obtain the conservation equation of the stress-energy tensor

∂µT
µ
ν = FνλJ

λ
cons + F 5

νλJ
λ
5, cons − ∂µJ

µ
5, consA

5
ν (B.2)

However, the currents so defined are not gauge covariant, meaning that
the BRST operator does not commute with δW/δAµ. For this reason one
usually define the covariant currents by adding to the consistent current a
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Chern-Simons term (also known as Bardeen-Zumino polynomial)

Jµ
cov = Jµ

cons + Jµ
BZ = Jµ

cons − c

2ε
µνρσA5

νFρσ (B.3a)

Jµ
5, cov = Jµ

5, cons + Jµ
5, BZ = Jµ

5, cons − c

6ε
µνρσA5

νF
5
ρσ (B.3b)

The Chern-Simons currents cannot be obtained as variation of a 4 dimensional
action, however they can appear via anomaly inflow as boundary variation
of a 5 dimensional Chern-Simons action. These are topological currents that
depend explicitly on A5

ν in such a way to cancel the gauge dependence of
the consistent currents1. Then, for this choice of currents, the equations of
motion become

∂µT
µ
ν = FνλJ

λ
cov + F 5

νλJ
λ
5, cov (B.4a)

∂µJ
µ
cov = − c

4ε
µνρσFµνF

5
ρσ (B.4b)

∂µJ
µ
5, cov = − c

8ε
µνρσ

(
FµνFρσ + F 5

µνF
5
ρσ

)
(B.4c)

Notice that for the case of interest, namely the longitudinal magneto-
transport in Weyl semimetals at F 5

µν = 0, the Bardeen-Zumino currents
are identically conserved (Jµ

5, BZ is actually zero) and thus the currents
conservation equations are the same in both framework.

We remark that in Chapter 6 we had to include an energy relaxation term
to achieve finite DC conductivities. This was necessary because, from the
covariant point of view, the RHS of the energy equations has a constant DC
Maxwell term F0νJ

ν
cov ∼ E·Jcov ∼ E·B, because Jµ

cov = ξBB
µ in equilibrium,

see (6.15). From a consistent point of view, however, the equilibrium current
vanishes, see Appendix C, thus the Maxwell term is zero in the energy-
conservation equation. Nonetheless, we still need energy relaxation because
in the consistent description the RHS of the energy-conservation equation
has an explicit anomaly term (B.2).

1Remember that the Chern-Simons action does not depend on gµν , hence the definition
of the stress-energy tensor is the same in the covariant or consistent formalism.
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Appendix C
Weyl semimetals

Consider a Weyl semimetal with two nodes in each Brillouin zone, one left-
and one right-handed. We can describe its dynamics using Weyl equations,
alternatively we can employ the Dirac equation in the presence of an axial
gauge field bµ [271] (

i/∂ − γ5/b
)
ψ = 0 (C.1)

The role of bµ is to parametrize the distance in energy-momentum space
between the two Weyl nodes. The dispersion relation is indeed

ωL,R = ±b0 ±
√

(p − b)2 (C.2)

and is shifted for the left- and right-handed components due to bµ = A5
µ.

Notice that this axial gauge field is observable, contrary to the vector gauge
field Aµ (it is not protected by gauge transformations). In materials without
strain or boundaries bµ is a constant, however in strained samples and near
the boundaries F 5

µν can be non-zero [328, 329].
Chiral Kinetic Theory naturally provides a description in terms of covari-

ant currents [314], this is because kinetic theory by its nature studies the
small fluctuations above the vacuum (the Fermi surface in this case), while
the Chern-Simons currents are associated with the dynamics at the bottom
of the Dirac sea, or with the cut-off from the point of view of the field theory
computations [271], see the Figure C.1.

To shift from the covariant currents to the consistent ones, we need to
add the Chern-Simons (Bardeen-Zumino) currents, see Appendix B. The
vector Bardeen-Zumino current takes the following form in terms of covariant
electric and magnetic fields1

Jµ
BZ = −cϵµνρσbνuρEσ − cuµ(b ·B) + cBµ(b · u) (C.3)

1Remember that Jµ
5, BZ = 0 when F 5

µν = 0.
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Figure C.1: Figure taken from [271]. 2d projection of Weyl nodes shifted in energy-
momentum space. The covariant current describes the dynamics near the Fermi
surface, while the Bardeen-Zumino current close to the bottom of the Dirac sea.

where we remind bµ = A5
µ is the distance in momentum space between the

two Weyl nodes. This current contains information about the anomalous
Hall effect, and it is the current that appears in the Maxwell equations in a
theory of magneto-hydrodynamics [314].

The consistent currents are the only one compatible with local charge
conservation and Bloch theorem. Indeed, the consistent current in equilibrium
is

Jcons
∣∣
eq = c (µ5 − b0) B = 0 (C.4)

because the chemical potential is fixed by the separation in energy between
the nodes2 [271, 304]. However, this Chern-Simons current does not partici-
pate in the longitudinal magneto-transport, hence the results obtained in
Chapter 6 are correct and independent on the choice of framework (covariant
or consistent currents).

2Contrary to the vector chemical potential, the identification of µ5 with A5
0 is more

subtle [304], so the two terms cancel only in equilibrium and not identically on any solution.
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